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Calibration parameters in deterministic computer experiments
are those attributes that cannot be measured or available in physical
experiments. Kennedy and O’Hagan (2001) suggested an approach
to estimate them by using data from physical experiments and com-
puter simulations. A theoretical framework is given which allows us
to study the issues of parameter identifiability and estimation. It is
shown that a simplified version of the original KO method leads to
asymptotically inconsistent calibration. This calibration inconsisten-
cy can be remedied by modifying the original estimation procedure.
A novel calibration method, called the L2 calibration, is proposed
and proven to be consistent and enjoys optimal convergence rate.
A numerical example and some mathematical analysis are used to
illustrate the source of the inconsistency problem.

1. Introduction. Because of the advances in complex mathematical
models and fast computer codes, experiments on a computer, or referred to
as computer experiments in the statistical literature, have become popular in
engineering and scientific investigations. Computer simulations can be much
faster or less costly than running physical experiments. Furthermore, physi-
cal experiments can be difficult to conduct as in the detonation of explosive
materials or even infeasible when only rare events like land slide or hur-
ricane are observed. Therefore computer simulations can be a stand-alone
tool or combined with (typically smaller) data from physical experiments
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2 R. TUO AND C. F. J. WU

or field observations. There are many successful applications of comput-
er experiments as reported in the literature. For a review of the general
methodologies and examples, see the books by Santner, Williams and Notz
(2003), and Fang, Li and Sudjianto (2005), and the November 2009 issue of
Technometrics, which was devoted to computer experiments.

In this paper we consider the situations in which both physical experi-
ments/observations and computer simulations are conducted and some in-
put variables in the computer code are either unknown or unmeasured in the
physical experiment. We refer to them as calibration parameters. From the
responses in physical experiments alone, we cannot estimate the true values
of the calibration parameters. We can run the computer codes by choosing
selected values of the calibration parameters. From the combined data of
the two sources, we can make inference about the parameters. That is, we
can use the physical responses to calibrate the computer model. Apart from
the calibration parameters, control variables are also involved as in standard
computer experiments (Santner, Williams and Notz, 2003).

We use a spot welding example from Bayarri et al. (2007b) to illustrate
the control variables and calibration parameters. In resistance spot welding,
two sheets of metal are compressed by water-cooled copper electrodes under
an applied load, L. A direct current of magnitude C is supplied to the sheets
by two electrodes to create localized heating at the interface (called “faying
surface”) between the two sheets. The heat produced by the current flow
across the faying surface leads to melting, and, after cooling, a weld ”nugget”
is formed. The size of nugget is taken as the response because it gives a
good measure of the strength of the weld. Here L and C are considered as
control variables. The contact resistance at the faying surface is a calibration
parameter because it cannot be measured in physical experiments but can
be used as an input variable to a finite element code called ANSYS.

In their pioneering work Kennedy and O’Hagan (2001) proposed a model
to link the two data sources by employing Gaussian process models, which
are commonly used in the computer experiments literature. Since its pub-
lication, this approach has received a great deal of attention in the sta-
tistical literature. See Higdon et al. (2004, 2008), Bayarri et al. (2007a,b),
Joseph and Melkote (2009), Wang, Chen and Tsui (2009), Han, Santner and Rawlinson
(2009), among others. It has seen a variety of applications, including hydrol-
ogy, radiological protection, cylinder implosion, spot welding, micro-cutting
and climate prediction, which were reported in the papers mentioned above
and also in Goldstein and Rougier (2004) and Murphy et al. (2007). In spite
of its importance as a methodology and significant practical impact, there
has been no theoretical research on its modeling and estimation strategies.
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The main purpose of this paper is to provide a theoretical framework that
facilitates the study of issues of parametrization, estimation and model-
ing in the Kennedy-O’Hagan formulation. For simplicity, we shall refer to
Kennedy-O’Hagan as KO in the rest of the paper.

The paper is organized as follows. Some basic notation and terminolo-
gy are given in Section 2. A new theoretical framework for the calibration
problem and its connection to function approximation via Gaussian process
modeling are given in Section 3. In particular, the lack of identifiability of
the calibration parameters is discussed and a well-defined notion of calibra-
tion parameters is proposed by using the L2 distance projection. The KO
modeling strategy is discussed in Section 3.1. In order to provide a clean and
workable mathematical analysis, we consider in Section 4.1 some simplifica-
tions of their original formulation. One is to drop the prior, which should
not affect the general conclusions of our work because the information in the
prior becomes negligible as the data gets larger. Thus we shall refer to cali-
bration based on this simplification as the likelihood calibration. A key result
is Theorem 1, which states that the likelihood calibration is asymptotically
inconsistent according to our definition of the true calibration parameters.
A numerical example is given to show that the inconsistency can have a
dramatic effect in small samples and some mathematical analysis is given
to shed some light on why this happens. See Section 4.1 and 4.2. To recti-
fy the inconsistency problem, a modification of the likelihood calibration is
proposed in Section 5.1 by introducing a scale parameter into its correlation
function. When the scale parameter converges to +∞ at a certain rate, cali-
bration consistency is restored (see Theorem 2). The convergence rate of the
original (unmodified) likelihood calibration is given in Theorem 3 of Section
5.2. To achieve both calibration consistency and optimal convergence rate,
we introduce a new method called least L2 distance calibration in Section
5.3 and prove such properties in Theorem 4 for the case of cheap code, i.e.,
when the computer code can be evaluated with no cost. Its extension to
expensive code is given in Theorem 5 of Section 6. The convergence rate is
slower than that in Theorem 4 because, in expensive code, there is cost in
evaluating the code and an unknown function ys associated with the code
needs to be estimated from data. Concluding remarks are given in Section 7.
Technical details are given in two appendices. Throughout the paper, math-
ematical tools and results in native space (Wendland, 2005) are extensively
used.

2. Preliminaries. For a convex region Ω ⊂ Rd, let C(Ω) be the set of
continuous functions over Ω. For a multiple index α = (α1, . . . , αd), define
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4 R. TUO AND C. F. J. WU

|α| = α1 + . . . + αd. Given x = (x1, . . . , xd) and function f , we denote the
partial derivatives of f by

Dαf :=
∂|α|

∂xα1
1 · · · ∂xαd

d

f.

For integer k > 0, define Ck(Ω) = {f ∈ C(Ω) : Dαf ∈ C(Ω) for |α| ≤ k}.
For a function f over Ω, define the L2 norm as ‖f‖L2(Ω) = (

∫
Ω f2)1/2 and

the Sobolev norm as

‖f‖Hk(Ω) =

√ ∑

|α|≤k

‖Dαf‖2L2(Ω).(2.1)

The Sobolev spaceHk(Ω) consists of functions with finiteHk(Ω) norm value.
The definition of the Sobolev spaces can be extended to the case where k is
a real number. Such spaces are called the fractional Sobolev spaces and we
refer to Adams and Fournier (2003) for details.

Functional approximation methods play an important role in the estima-
tion of the calibration parameters. In this article, we consider the method of
kernel interpolation (Fasshauer, 2011). This method provides a good func-
tional approximation when the design D consists of scattered points, i.e., the
design points do not have any regular structure.

Suppose y is a smooth function over Ω and y(x1), . . . , y(xn) are observed.
A kernel interpolator ŷ is built as follows. First choose a symmetric pos-
itive definite function Φ(·, ·) over Ω × Ω. Two common choices for Φ are
the squared exponential family (also referred to as the Gaussian correlation
family), with

Φ(s, t;φ) = exp{−φ‖s− t‖2}(2.2)

and the Matérn family (Stein, 1999), with

Φ(s, t; ν, φ) =
1

Γ(ν)2ν−1

(
2
√
νφ‖s − t‖

)ν
Kν

(
2
√
νφ‖s − t‖

)
,(2.3)

where Kν is the modified Bessel function of the second kind. Let Φ =
(Φ(xi, xj))ij . Since the function Φ is positive definite, the matrix Φ is also
positive definite. Thus the linear system about u = (u1, . . . , un)

T

Y = Φu(2.4)

has a unique solution u = Φ−1Y , where Y = (y(x1), . . . , y(xn))
T. For x ∈ Ω,

let

ŷ(x) =
n∑

i=1

uiΦ(x, xi).(2.5)
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It can be verified that ŷ(x) indeed interpolates (xi, y(xi))’s.
We call the kernel Φ stationary if Φ(x1, x2) depends only on the differ-

ence x1 − x2. Another special case of the kernel interpolation is the radial
basis function interpolation (Buhmann, 2003), in which the kernel function
Φ(x1, x2) depends only on the distance ‖x1 − x2‖ as in (2.2) or (2.3). The
choice of the kernel function is critical to the performance of the interpo-
lation. Cross-validation is a common method for choosing a suitable kernel
function, see Santner, Williams and Notz (2003); Rasmussen and Williams
(2006).

In computer experiments, Gaussian process models are widely used as sur-
rogate models for unknown functions (Sacks et al., 1989). There is a known
relationship between the kernel interpolation and the Gaussian process pre-
diction (Anjyo and Lewis, 2011). Suppose z(x) is a Gaussian process on Ω
with mean 0 and covariance function Φ. Then given Z = (z(x1), . . . , z(xn))

T,
the predictive mean of z(x) for any x is

E[z(x)|Z] = Φ(x,x)TΦ−1Z,(2.6)

where Φ(x,x) = (Φ(x, x1), . . . ,Φ(x, xn))
T. It can be seen that ŷ in (2.5) has

the same form as the predictive mean in (2.6). For details, see the book by
Santner, Williams and Notz (2003).

3. Calibration Problem. Suppose we have a physical system with a
vector of control variables x as its input. Denote the input domain of x by
Ω, which is a convex and compact subset of Rd. The response of this system
given x is denoted as yp(x). We call the physical system deterministic if
yp(x) is a fixed value for each x ∈ Ω, and stochastic if yp(x) is random
for some x. To study the response surface, we conduct experiments on a
selected set of points {x1, . . . , xn}. The set D = {x1, . . . , xn} is called the
experimental design or design for brevity.

We also have a computer code to simulate the physical system. The input
of this computer code consists of two types of variables: the control variable
x and the calibration variable θ. The latter represents inherent attributes of
the physical system, which cannot be controlled in the physical experiment.
Denote the input domain for θ by Θ, which is a compact subset of Rq. The
computer code gives a deterministic function of x and θ, denoted as ys(x, θ).

Computer experiments are usually much less costly than the correspond-
ing physical experiments. In an ideal situation, a computer run only takes a
short time so that we can run the computer code as many times as we want.
Mathematically speaking, we call a computer code cheap if the functional
form for ys is known. However, computer runs may be time-consuming so

imsart-aos ver. 2011/12/06 file: calibration.tex date: April 18, 2014



6 R. TUO AND C. F. J. WU

that we can only evaluate ys on a set of design points. In this case, an es-
timate ŷs(·) based on the observed ys values (and the corresponding input
values) is needed and we call the computer code expensive.

In many cases, the true value of the calibration parameters cannot be
measured physically. For instance, material properties like porosity and per-
meability are important computer inputs in computational material simula-
tions, which cannot be measured directly in physical experiments. A stan-
dard approach to identify those parameters is to use physical responses to
adjust the computer outputs. Use of the physical response and computer
output to estimate the calibration parameters is referred to as calibration.

3.1. Kennedy-O’Hagan Method. Kennedy and O’Hagan (2001) was the
first to propose a Bayesian framework for the estimation of the calibration
parameters. The original version of the Kennedy-O’Hagan method works
for stochastic systems with expensive computer codes. Denote the physical
response by yp(xi), for i = 1, . . . , n. Kennedy and O’Hagan (2001) supposes
that the physical response follows independent normal distribution. Specif-
ically, they suggests that

yp(xi) = ζ(xi) + ei,(3.1)

where ζ(xi) = Eyp(xi) and ei
i.i.d.∼ N(0, ς2) with and an unknown ς ≥ 0. De-

note the true value of the calibration parameter by θ0. Kennedy and O’Hagan
(2001) proposes the following model to link ζ(·) and ys(·, θ0)

ζ(·) = ρys(·, θ0) + δ(·),(3.2)

where ρ is an unknown regression coefficient, δ(·) is an unknown discrepancy
function. Kennedy and O’Hagan (2001) claims that δ is a nonzero function
because the computer code is built based on certain assumptions or simpli-
fications which do not match the reality exactly. Thus yp and ys are related
via the model:

yp(x) = ρys(x, θ0) + δ(x) + e.(3.3)

As is typically done in the literature of computer experiments, they assume
that ys(·, ·) and δ(·) are independent realizations of Gaussian processes. The
use of Gaussian process modeling in computer experiment problems can be
traced back to Sacks et al. (1989). The Gaussian process assumption can be
regarded as a nonparametric Bayesian technique where the Gaussian pro-
cesses serve as prior distributions for the unknown functions ys(·, ·) and δ(·)
(Rasmussen and Williams, 2006). In Gaussian process modeling, we usually
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choose the Gaussian or Matérn correlation functions (see (2.2) and (2.3))
and regard the parameters like φ and ν as unknown models parameters.
Then θ0 can be estimated from (3.3) through a Bayesian approach.

3.2. L2 Distance Projection. The aim of this work is to establish a the-
oretical framework for the calibration problems from a frequentist point of
view, i.e., we regard ζ(·), ys(·, ·) in (3.2) as deterministic functions. For sim-
plicity, we rewrite (3.2) as

ζ(·) = ys(·, θ0) + δ(·).(3.4)

This does not make much difference because we can regard the term ρys(x, θ)
as the computer output with calibration parameters (ρ, θ).

From now on, we suppose the physical system is deterministic, i.e., yp(xi) =
ζ(xi) or equivalently ei = 0. Then under the framework of Kennedy and O’Hagan
(2001), the calibration problem can be formulated as

yp(x) = ys(x, θ0) + δ(x),(3.5)

where θ0 is the true value of the calibration parameter and δ is the discrep-
ancy between yp and ys(·, θ0).

From a frequentist perspective, θ0 in (3.5) is unidentifiable, because the
pair (θ0, δ(·)) cannot be uniquely determined even if yp(·) and ys(·) are
known. This identifiability issue is discussed in Bayarri et al. (2007a,b);
Han, Santner and Rawlinson (2009) and other papers.

The main purpose of this section is to provide a rigorous theoretical study
on the estimation of calibration parameters. Given the lack of identifiabil-
ity for θ, we need to find a well-defined parameter in order to study the
estimation problem. A standard approach when the model parameters are
unidentifiable is to redefine the true parameter value as one that minimizes
the “distance” between the model and the observed data. First define

ǫ(x, θ) := yp(x)− ys(x, θ).(3.6)

Here we adopt the L2 norm in defining the distance. If another distance
measure is chosen, the proposed mathematical framework can be pursued in
a similar manner.

Definition 1. The L2 distance projection of θ is given by

θ∗ = argmin
θ∈Θ

‖ǫ(·, θ)‖L2(Ω),(3.7)

where ǫ is defined in (3.6). For brevity, we will also refer to θ∗ as the L2

projection.
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8 R. TUO AND C. F. J. WU

In Definition 1 we find a θ value that minimizes the L2 discrepancy be-
tween the physical and computer observations, because the true value of θ
is not estimable. The value θ∗ given by (3.7) minimizes the average predic-
tive error given by the computer code. This is relevant and useful since our
interest lies in the prediction of the physical response. One justification for
choosing the L2 norm comes from the common use of the quadratic loss
criterion. Suppose we want to predict the physical response at a new point
x0 and x0 is uniformly distributed over Ω. Then the expected quadratic loss
given θ is

∫

Ω
(yp(x)− ys(x, θ))2dx = ‖ǫ(·, θ)‖2L2(Ω).(3.8)

Thus the θ value minimizing (3.8) is the L2 distance projection θ∗.
Since the functional forms for yp and ys are unknown, θ∗ cannot be ob-

tained by solving (3.7). For the problems with cheap computer code, we
know ys and the function values of yp over a set of design points, denoted
as yp(D). For the problems with expensive computer code, we know only
yp(D) and the function values of ys over the design points for the computer
simulation, denoted as ys(G). Call θ̂ a (deterministic) estimator of θ∗, if θ̂
depends only on (D, yp(D), ys) for cheap code or on (D,G, yp(D), ys(G)) for
expensive code. For fixed yp and ys, let {θ̂n} be a sequence of estimates
given by a sequence of designs (given by either {Dn} or {(Dn,Gn)}). Then
θ̂n is said to be consistent if θ̂n tends to θ∗ as the designs become dense over
Ω or (Ω,Ω×Θ). The term “consistent” or “consistency” is a misnomer but
we keep it here for the statistical audiences.

4. Frequentist Properties of the Kennedy-O’Hagan Method. In
this section we examine the frequentist properties of the calibration method
by Kennedy and O’Hagan (2001). Our theoretical analysis shows that the
method is inconsistent according to Definition 1. We also construct some
examples to show that the Kennedy-O’Hagan method may produce unrea-
sonable answers.

4.1. Simplified KO calibration. In order to conduct a rigorous mathemat-
ical analysis, we make the following simplifications to the Kennedy-O’Hagan
method. We refer to this simplified version as the simplified KO calibration,
or KO calibration for brevity.

(i) The computer code is cheap.
(ii) The physical system is deterministic.
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(iii) Suppose ρ = 1. The discrepancy function δ is a realization of a Gaus-
sian process with mean 0 and the covariance function σ2Φ, where σ2

is an unknown parameter and the function Φ is known.
(iv) Maximum likelihood estimation (MLE) is used to estimate (θ, σ2) in-

stead of Bayesian analysis.

The assumption (i) on cheap code will be relaxed for the L2 calibration in
Section 6. In assumption (iv), we only consider the likelihood portion of the
Bayesian formulation in order to have a clean and workable mathematical
analysis. As will be discussed in Section 7, this simplification should not
affect the general message one may draw regarding the original Bayesian
formulation. Not to break the flow, further comments and justifications for
the assumptions will be deferred to the concluding section.

Under these assumptions, the functions ǫ(xi, ·) are known for i = 1, . . . , n.
Then the likelihood function given in Kennedy and O’Hagan (2001) can be
simplified and it can be shown that the log-likelihood function for (θ, σ2)
here is given by

l(θ, σ2;Y ) = −n

2
log σ2 − 1

2
log |Φ| − 1

2σ2
ǫ(x, θ)TΦ−1ǫ(x, θ),(4.1)

where ǫ(x, θ) = (ǫ(x1, θ), . . . , ǫ(xn, θ))
T and Φ = (Φ(xi, xj))ij . For details on

the likelihood functions of Gaussian process models, we refer to Santner, Williams and Notz
(2003); Rasmussen and Williams (2006).

Our study will employ the reproducing kernel Hilbert spaces (also called
the native spaces) as the mathematical tool (Wendland, 2005). Given a
symmetric and positive definite function Φ, define the linear space

FΦ(Ω) =

{
N∑

i=1

βiΦ(·, xi) : N ∈ N, βi ∈ R, xi ∈ Ω

}

and equip this space with the bilinear form

〈 N∑

i=1

βiΦ(·, xi),
M∑

j=1

γjΦ(·, yj)
〉
Φ
:=

N∑

i=1

M∑

j=1

βiγjΦ(xi, yj).

Define the native space NΦ(Ω) as the closure of FΦ(Ω) under the inner prod-
uct 〈·, ·〉Φ. The inner product of NΦ(Ω), denoted as 〈·, ·〉NΦ(Ω), is induced by

〈·, ·〉Φ. Define the native norm as ‖f‖NΦ(Ω) =
√
〈f, f〉NΦ(Ω). Some required

properties of reproducing kernel Hilbert spaces are given in Appendix A
under Propositions 1-6. Their equations are numbered as (A.1) to (A.7).
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Direct calculation shows that the maximum likelihood estimation (MLE)
for θ is

θ̂KO = argmin
θ∈Θ

ǫ(x, θ)TΦ−1ǫ(x, θ).(4.2)

For fixed θ, let ǫ̂(·, θ) be the kernel interpolator for ǫ(·, θ) given by (2.5), i.e.,

ǫ̂(·, θ) = Φ(·,x)TΦ−1ǫ(x, θ).(4.3)

From the definition of the native norm, we have

‖ǫ̂(·, θ)‖2NΦ(Ω) = ǫ(x, θ)TΦ−1ΦΦ−1ǫ(x, θ) = ǫ(x, θ)TΦ−1ǫ(x, θ),

which, together with (4.2), gives

θ̂KO = argmin
θ∈Θ

‖ǫ̂(·, θ)‖2NΦ(Ω).(4.4)

Now we study the asymptotic properties for the KO calibration method.
To this end, we require the design points to become dense over Ω. This
property is measured by the fill distance.

Definition 2. For a design D ∈ Ωn, define its fill distance as

h(D) := max
x∈Ω

min
xi∈D

‖xi − x‖.(4.5)

We use θ̂KO(D) to denote the estimator θ̂KO under D. Theorem 1 gives
the limiting value of θ̂KO(D).

Theorem 1. Suppose there exists vθ ∈ L2(Ω), such that ǫ(x, θ) =
∫
ΩΦ(x, t)vθ(t)dt

for any θ ∈ Θ. Moreover, suppose sup
θ∈Θ

‖vθ‖L2 < +∞, Φ has continuous sec-

ond order derivatives, and there exists a unique θ′ ∈ Θ such that

‖ǫ(·, θ′)‖NΦ(Ω) = inf
θ∈Θ

‖ǫ(·, θ)‖NΦ(Ω).(4.6)

Then θ̂KO(Dn) → θ′ as h(Dn) → 0.

Proof. Let ǫ̂n be the kernel interpolator for ǫ under design Dn. From
(4.4) and (4.6), it suffices to prove that ‖ǫ̂n(·, θ)‖2NΦ(Ω) converges to ‖ǫ(·, θ)‖2NΦ(Ω)
uniformly with respect to θ ∈ Θ. From Proposition 1, we have

‖ǫ̂n(·, θ)‖2NΦ(Ω) − ‖ǫ(·, θ)‖2NΦ(Ω) = ‖ǫ̂n(·, θ)− ǫ(·, θ)‖2NΦ(Ω)
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≤ C2
Φh

2(Dn)‖vθ‖2L2(Ω)

≤ C2
Φh

2(Dn) sup
θ∈Θ

‖vθ‖2L2(Ω),(4.7)

where the first equality follows from the identity 〈ǫ(·, θ), ǫ̂n(·, θ)−ǫ(·, θ)〉NΦ(Ω) =
0. The right side of (4.7) goes to 0 as n → ∞ and is independent of θ. This
completes the proof.

Because in general θ′ 6= θ∗, according to Definition 1, the KO calibration
is not consistent. In view of the convergence result in Theorem 1, it is im-
portant to find out how different the limiting value θ′ of the KO calibration
is from θ∗. To address this question, we consider the difference between the
two norms ‖·‖L2(Ω) and ‖·‖NΦ(Ω). This difference is related to the eigenvalues
of the integral operator defined as

κ(f) =

∫

Ω
Φ(·, x)f(x)dx,(4.8)

for f ∈ L2(Ω). Denote the eigenvalues of κ by λ1 ≥ λ2 ≥ · · · . Let fi be the
eigenfunction associated with λi with ‖fi‖L2(Ω) = 1. Then it can be shown
that

‖fi‖2NΦ(Ω) = 〈fi, λ−1
i fi〉2L2(Ω) = λ−1

i ,(4.9)

where the first equality follows from (A.2) and the fact that κ(λ−1
i fi) = fi.

It is known in functional analysis that κ is a compact operator and therefore
limk→∞ λk = 0 (Conway, 1990). Thus (4.9) yields that ‖fi‖2NΦ(Ω)/‖fi‖2L2(Ω) =

λ−1
i → ∞ as i → ∞. This leads to

sup
f∈NΦ(Ω)

‖f‖NΦ(Ω)

‖f‖L2(Ω)
= ∞,(4.10)

which implies that there are functions f with arbitrarily small L2 norm while
their NΦ norm is bounded away from zero. Therefore, by Definition 1, the
KO calibration can give results that are far from the L2 distance projection.
The following example shows that this effect can indeed be dramatic.

Example 1. Consider a calibration problem with a three-level calibra-
tion parameter. Let Ω = [−1, 1], Φ(x1, x2) = exp{−(x1 − x2)

2}. By using a
numerical method, we obtain the eigenvalue and eigenfunction of κ defined
in (4.8). The first and second eigenvalues are λ1 = 1.546 and λ2 = 0.398.
For a better visual effect, we use the eigenfunctions whose L2 norms are
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12 R. TUO AND C. F. J. WU

√
20. We plot the first and second eigenfunctions of κ in Figure 1. We also

plot sin 2πx for later comparison. Suppose we have three different computer
codes. Denote the discrepancy between the physical response and each of
the computer output by ǫ1, ǫ2 and ǫ3 respectively. Suppose ǫ1, ǫ2, ǫ3 are the
three functions given in Figure 1, i.e., ǫ1 and ǫ2 are the first and second
eigenfunction of κ, and ǫ3 is sin 2πx. Then which code is the best? From
‖ǫ1‖L2(Ω) = ‖ǫ2‖L2(Ω) =

√
20 and ‖ǫ3‖L2(Ω) = 1, the third computer code is

the best according to Definition 1.

−1.0 −0.5 0.0 0.5 1.0

−
4

−
2

0
2

4

x

ep
si

lo
n

Fig 1. Three functions considered in Example 1. The solid and dashed lines are the first and

second eigenfunction of κ with L2 norm
√

20 respectively. The dotted line shows function

sin 2πx.

However, by using a Gaussian process model with the same correla-
tion function Φ, we get a different result. By (4.2), maximizing the likeli-
hood function is equivalent to minimizing the pivoted sum of square (PSS):
εTi Φ

−1εi, where εi = (ǫi(x1), . . . , ǫi(xn))
T for i = 1, 2, 3. We choose a space-

filling design of 11 points, given by xj = −1 + (j − 1)/5 for j = 1, . . . , 11.
The PSSs are 12.594 for i = 1, 57.908 for i = 2, and 17978.65 for i = 3. Thus
the KO calibration will choose the first code because it has the smallest PSS
value. This demonstrates that the likelihood-based method can give very dif-
ferent rankings of the competing codes from the L2 projection. From Figure
1 we can see that |ǫ3(x)| is smaller than |ǫ1(x)| and |ǫ2(x)| for every x, i.e.,
the point-wise prediction error for the third code is uniformly smaller than
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A THEORETICAL FRAMEWORK FOR CALIBRATION 13

the first two. Therefore, the KO calibration made a wrong choice. This also
gives a good justification for choosing the L2 norm rather than the native
norm in Definition 1.

To give a more general explanation for the phenomenon in Example 1,
we consider the situations where the Matérn correlation functions defined
by (2.3) are used. Corollary 1 in Appendix A shows that for the Matérn
correlation functions, the reproducing kernel Hilbert space NΦ(Ω) equals to
the (fractional) Sobolev space Hν+d/2(Ω) and the two norms are equivalent
for ν ≥ 1, where the Sobolev norm is defined by (2.1). Note that the Sobolev
norm can be big for a function with wild oscillation even when its L2 norm
is small (the same as that shown by (4.10)). Thus, the Sobolev norm, which
is equivalent to the native norm in this context, is not a good measure of
discrepancy, because we only care about the magnitude of the discrepancy,
not its oscillation. Therefore it is not suitable to use the KO calibration in
most practical problems. For Gaussian correlation function, this problem is
even more serious because the reproducing kernel Hilbert spaces generated
by Gaussian kernels can be embedded into any Sobolev space (which can be
shown by Proposition 4).

4.2. Numerical Study on Kennedy-O’Hagan Method with Estimated Cor-
relation Function. To give a more realistic comparison, we extend the study
in Example 1 by considering the frequentist version of the original Kennedy-
O’Hagan method, in which the function Φ is estimated as well. Specifically,
we suppose that Φ depends on a model parameter φ, denoted as Φφ(·, ·).
Then the log-likelihood function is

l(θ, σ2, φ;Y ) = −n

2
log σ2 − 1

2
log |Φφ| −

1

2σ2
ǫ(x, θ)TΦ−1

φ ǫ(x, θ),(4.11)

where Φφ = (Φφ(xi, xj))ij . By substituting the analytical form of σ̂2 into
(4.11), we obtain the log-likelihood function with respect to (θ, φ):

l(θ, φ;Y ) = −n

2
log ǫ(x, θ)TΦ−1

φ ǫ(x, θ)− 1

2
log |Φφ|.(4.12)

As in Section 4.1, we estimate (θ, φ) by using the maximum likelihood. In this
subsection we present some numerical results, which show that even when
Φ is estimated, the frequentist KO method still suffers from the problem
demonstrated in Example 1.

Example 1 (continued). We use the same true functions ǫ1, ǫ2, ǫ3 and
design points as in Example 1. We compute the log-likelihood functions given
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Fig 2. Log-likelihood functions for the three functions ǫ1, ǫ2, ǫ3 given in Example 1 are

plotted in solid, dashed and dotted lines respectively.

in (4.12) with Φφ(x1, x2) = exp{−φ(x1 − x2)
2}. Denote the log-likelihood

function in (4.12) by l(θ, φ), where θ = 1, 2, 3 correspond to the candidate
functions ǫ1, ǫ2, ǫ3. The functions l(θ, ·) are plotted in Figure 2 for θ = 1, 2, 3.
From the figure we can see that supθ∈{1,2,3},φ∈[1,6] l(θ, φ) = l(1, 1). Therefore
the frequentist KO method will pick ǫ1, which gives the same (incorrect)
result as in Example 1.

5. Asymptotic Results: Cheap Code. Theorem 1 is the first asymp-
totic result we present in this article. In this section we shall study other
convergence properties, assuming that the computer code is cheap as in
Section 4.1.

5.1. Modified KO Calibration. Given the wide-spread use of the Gaus-
sian process modeling in calibration problems (as in the KO method), a
fundamental question is whether we can modify it to rectify its inconsis-
tency problem. For convenience we assume a stationary Gaussian process
model Y (x). The correlation of Y is given by

R(x) = Corr(Y (·+ x), Y (·)),

whereR is a positive definite kernel overRd. The Fourier transform (Stein and Weiss,
1971) is a useful tool for studying stationary kernels. We will use the notation
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A THEORETICAL FRAMEWORK FOR CALIBRATION 15

NR(Ω) instead of NR(·−·)(Ω) for simplicity.

Definition 3. For f ∈ L1(R
d) define the Fourier transform by

f̃(w) := (2π)−d/2

∫

Rd

f(x)e−iwTxdx.

From Theorem 1, it can be seen that the KO calibration is not con-
sistent if the correlation function R is fixed. In order to construct consis-
tent calibration, we should use a sequence of R functions indexed by n,
denoted by Rn. From (A.2), the ‖ · ‖NΦ(Ω) norm becomes ‖ · ‖L2 only when
Φ(x1, x2) = δ(x1 − x2), where δ denotes the Dirac delta function. We need
the convergence Rn(x) → δ(x) in order to obtain consistency. An easy way
to achieve this convergence is to introduce a scale parameter. SupposeR(·;φ)
is a family of correlation functions on Rd with φ > 0. Call φ a scale param-
eter if R(x;φ) = R(φx; 1) for any φ > 0 and any x ∈ Rd. Most correlation
families like Gaussian or Matérn family satisfy these conditions.

Write Rn(x) = R(x;φn). Let θ̂(Rn,Dn) be the estimate of θ given by the
KO calibration using correlation function Rn under design Dn, referred to as
the modified KO calibration. The calibration consistency requires φn → ∞.
But to ensure the convergence of the interpolation, φn cannot diverge too
fast. The next theorem suggests that the modified KO calibration is consis-
tent if we choose a suitable increasing rate for φn. Define the convolution
f ∗ f(x) =

∫
Rd f(x− t)f(t)dt for any f ∈ L2(R

d). We list the required reg-
ularity conditions before stating the theorem. The lengthy proof is deferred
to Appendix B.

A1: supx∈Ω,θ∈Θ ‖∇xǫ(x, θ)‖ < +∞, where∇xǫ(x, θ) is the gradient of ǫ(x, θ)
with respect to x.

A2: There exists φ0 > 0 such that supθ∈Θ ‖ǫ(·, θ)‖NR(·;φ0)∗R(·;φ0)
(Ω) < +∞.

A3: R(·; 1) is integrable and supw 6=0,α≥1 R̃(αw)/R̃(w) < +∞, where R̃ is
the fourier transform of R(·; 1).

Theorem 2. Suppose conditions (A1-A3) are satisfied and R(·; 1) has
continuous derivatives. Then θ̂(Rn,Dn) → θ∗ if φn → +∞ and φnh(Dn) →
0.

Although the modified KO calibration is consistent, its implementation
relies on a prespecified sequence φn. For a calibration problem with a fixed
sample size, there is no theoretical guidelines on choosing the φ value. In
Section 5.3, we will propose a novel calibration method that is consistent
and does not rely on the choice of the kernel function.
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16 R. TUO AND C. F. J. WU

5.2. Convergence Rate. Under the assumption of Theorem 1, we can
employ (A.6) in Proposition 1 to show that the interpolation error given by
a kernel Φ with 2k derivatives is equivalent to O(h2k(Dn)). Given this rate,
Theorem 3 shows that the KO calibration, which converges to θ′ in Theorem
1, reaches the same rate. Let θ = (θ1, . . . , θq)

T.

Theorem 3. Under the conditions of Theorem 1, suppose Φ has 2k
continuous derivatives. We assume that θ′ is an interior point of Θ and
there exist a neighborhood U ⊂ Θ of θ′, and functions Divθ,Dijvθ ∈ C(Ω)
such that

∂ǫ

∂θi
(x, θ) =

∫

Ω
Φ(x, t)Divθ(t)dt,

∂2ǫ

∂θi∂θj
(x, θ) =

∫

Ω
Φ(x, t)Dijvθ(t)dt,

for x ∈ Ω, θ ∈ U and 1 ≤ i, j ≤ q. Moreover,

sup
θ∈U,1≤i,j≤q

{‖Divθ‖L2(Ω), ‖Dijvθ‖L2(Ω)} < ∞, and(5.1)

∂2

∂θ∂θT
‖ǫ(·, θ′)‖2NΦ(Ω) is invertible.(5.2)

Then ‖θ̂KO(Dn)− θ′‖ = O(h2k(Dn)).

Proof. For the proof we need some inequalities. The first one follows
immediately from (A.7) in Proposition 1:

‖ǫ̂n(·, θ)− ǫ(·, θ)‖NΦ(Ω) ≤ CΦh
k(Dn)‖vθ‖L2(Ω).(5.3)

From the definition of ǫ̂n in (4.3), we have ∂ǫ̂
∂θj

(·, θ) = Φ(·,x)TΦ−1 ∂ǫ
∂θj

(x, θ).

Because ∂ǫ̂n
∂θj

(·, θ) is also spanned by the functions {Φ(·, xi)}, ∂ǫ̂n
∂θj

(·, θ) is equal
to the kernel interpolator for the pairs (xi,

∂ǫ
∂θ (xi, θ)). As a result of (A.7) in

Proposition 1, we obtain

∥∥∥∥
∂(ǫ̂n − ǫ)

∂θi
(·, θ)

∥∥∥∥
NΦ(Ω)

≤ CΦh
k(Dn)‖Divθ‖L2(Ω).(5.4)

Similarly we have

∥∥∥∥
∂2(ǫ̂n − ǫ)

∂θi∂θj
(·, θ)

∥∥∥∥
NΦ(Ω)

≤ CΦh
k(Dn)‖Dijvθ‖L2(Ω).(5.5)
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As ‖ǫ̂n(·, θ)‖2NΦ(Ω) is minimized at θ̂KO(Dn), the Taylor expansion of ∂
∂θ‖ǫ̂n(·, θ)‖2NΦ(Ω)

with respect to θ gives

0 =
∂

∂θ
‖ǫ̂n(·, θ̂n)‖2NΦ(Ω)

=
∂

∂θ
‖ǫ̂n(·, θ′)‖2NΦ(Ω) +

(
∂2

∂θ∂θT
‖ǫ̂n(·, θ̃n)‖2NΦ(Ω)

)
(θ̂KO(Dn)− θ′),

where θ̃n is located between θ′ and θ̂KO(Dn). By Theorem 1, θ̃n → θ′. Thus

θ̂KO(Dn)− θ′

= −
(

∂2

∂θ∂θT
‖ǫ̂n(·, θ̃n)‖2NΦ(Ω)

)−1 ∂

∂θ
‖ǫ̂n(·, θ′)‖2NΦ(Ω),(5.6)

where ∂2

∂θ∂θT
‖ǫ̂n(·, θ̃n)‖2NΦ(Ω) is invertible because of assumption (5.2) and

the fact that θ̃n → θ′. Furthermore,

∂2

∂θi∂θj
‖ǫ̂n(·, θ̃n)‖2NΦ(Ω) −

∂2

∂θi∂θj
‖ǫ(·, θ̃n)‖2NΦ(Ω)

=
∂2

∂θi∂θj
‖ǫ̂n(·, θ̃n)− ǫ(·, θ̃n)‖2NΦ(Ω)

= 2

{〈
∂2(ǫ̂n − ǫ)

∂θi∂θj
(·, θ̃n), (ǫ̂n − ǫ)(·, θ̃n)

〉

+

〈
∂(ǫ̂n − ǫ)

∂θi
(·, θ̃n),

∂(ǫ̂n − ǫ)

∂θj
(·, θ̃n)

〉}

≤ 2

{
‖ǫ̂n(·, θ̃n)− ǫ(·, θ̃n)‖NΦ(Ω)

∥∥∥∥
∂2(ǫ̂n − ǫ)

∂θi∂θj
(·, θ̃n)

∥∥∥∥
NΦ(Ω)

+

∥∥∥∥
∂(ǫ̂n − ǫ)

∂θi
(·, θ̃n)

∥∥∥∥
NΦ(Ω)

∥∥∥∥
∂(ǫ̂n − ǫ)

∂θj
(·, θ̃n)

∥∥∥∥
NΦ(Ω)

}
,(5.7)

where the first equality follows from (A.4). Invoking (5.3)-(5.5), and the
condition h(Dn) → 0 in Theorem 1, (5.7) tends to 0. This results in

∂2

∂θ∂θT
‖ǫ̂n(·, θ̃n)‖2NΦ(Ω) →

∂2

∂θ∂θT
‖ǫ(·, θ′)‖2NΦ(Ω),(5.8)

because θ̃n tends to θ′. By the definition of θ′ in (4.6) and the assumption
that θ′ is an interior point of Θ, ∂

∂θi
‖ǫ(·, θ′)‖2NΦ(Ω) = 0. Therefore, we have

∂

∂θi
‖ǫ̂n(·, θ′)‖2NΦ(Ω) =

∂

∂θi
‖ǫ̂n(·, θ′)− ǫ(·, θ′)‖2NΦ(Ω)
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18 R. TUO AND C. F. J. WU

= 2

〈
∂(ǫ̂n − ǫ)

∂θi
(·, θ′), ǫ̂n(·, θ′)− ǫ(·, θ′)

〉

NΦ(Ω)

≤ 2

∥∥∥∥
∂(ǫ̂n − ǫ)

∂θi
(·, θ′)

∥∥∥∥
NΦ(Ω)

‖ǫ̂n(·, θ′)− ǫ(·, θ′)‖NΦ(Ω)

≤ 2C2
Φh

2k(Dn)‖vθ′‖L2(Ω)‖Divθ′‖L2(Ω) → 0,(5.9)

where the first equality follows from (A.4); the last inequality follows from
(5.3) and (5.4); and the limiting relationship follows from (5.1) and the fact
that h(Dn) → 0. Then we obtain the desired result by combining (5.6), (5.8)
and (5.9).

Noting that consistency is a necessary requirement for an estimator, we
would like to find an estimator that is consistent and attains the same conver-
gence rate as in Theorem 3. In the following subsection we find an estimator
that guarantees consistency and full efficiency.

5.3. Least L2 Distance Calibration. Let ŷp be the kernel interpolator
defined in (2.5) for yp under design D. Define the least L2 distance calibration
by

θ̂L2(D) = argmin
θ∈Θ

‖ŷp(·) − ys(·, θ)‖L2(Ω).(5.10)

For brevity, we will also refer to it as the L2 calibration. Han, Santner and Rawlinson
(2009) used the L2 norm in a different context, i.e., choosing an optimal tun-
ing parameter value to minimize the L2 norm of the observed discrepancy
ŷp− ys. Theorem 4 shows that θ̂L2(Dn) converges to the L2 projection θ∗ at
the optimal rate.

Theorem 4. Suppose θ∗ is the unique solution to (3.7) and an interior

point of Θ; yp ∈ NΦ(Ω);
∂2

∂θ∂θT
‖ǫ(·, θ∗)‖2L2(Ω) is invertible; Φ has 2k con-

tinuous derivatives; and there exists a neighborhood U ⊂ Θ of θ∗ such that
ys ∈ L2(Ω × U) and ys(x, ·) ∈ C2(U) for x ∈ Ω. Then as h(Dn) → 0,

‖θ̂L2(Dn)− θ∗‖ = O(hk(Dn)).(5.11)

Furthermore, if there exists v ∈ L2(Ω) such that yp(x) =
∫
ΩΦ(x, t)v(t)dt for

all x ∈ Ω, then the convergence rate can be improved to

‖θ̂L2(Dn)− θ∗‖ = O(h2k(Dn)).(5.12)
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Proof. First we prove the consistency, i.e., the convergence of θ̂L2(Dn)
to θ∗. Because θ̂L2(Dn) minimizes ‖ŷpn − ys(·, θ)‖2L2(Ω) and θ∗ is the unique

minimizer of ‖ǫ(·, θ)‖2L2(Ω), it suffices to prove that ‖ŷp − ys(·, θ)‖2L2(Ω) con-

verges to ‖ǫ(·, θ)‖2L2(Ω) uniformly with respect to θ. Note

‖ŷp − ys(·, θ)‖2L2(Ω) − ‖ǫ(·, θ)‖2L2(Ω)

= (‖ŷp − ys(·, θ)‖L2(Ω) − ‖ǫ(·, θ)‖L2(Ω)) ·
(‖ŷp − ys(·, θ)‖L2(Ω) + ‖ǫ(·, θ)‖L2(Ω))

≤ ‖ŷp − ys(·, θ)− ǫ(·, θ)‖L2(Ω)(‖ŷp − ys(·, θ)‖L2(Ω) + ‖ǫ(·, θ)‖L2(Ω))

≤ ‖ŷp − yp‖L2(Ω)(‖ŷp‖L2(Ω) + ‖ys(·, θ)‖L2(Ω) + ‖ǫ(·, θ)‖L2(Ω)).(5.13)

Because h(Dn) → 0, it can be seen from (A.5) that sup |ŷp(x) − yp(x)| →
0. Together with the compactness of Ω, we have ‖ŷp − yp‖L2(Ω) = o(1)
and ‖ŷp‖L2(Ω) = O(1). Therefore, the uniform convergence is obtained from

(5.13), and this leads to the consistency of θ̂L2(Dn).
The convergence rate can be derived by following a similar argument as

in Theorem 3. Note that for any f ∈ L2(Ω),

‖f‖L2 ≤
√

V ol(Ω) sup
x∈Ω

|f(x)|,(5.14)

where V ol(Ω) is the volume of Ω. Because ‖ǫ̂n(·, θ)‖2L2(Ω) is minimized at

θ̂L2(Dn), θ̂L2(Dn) tends to θ
∗ and θ∗ is an interior point, the Taylor expansion

gives

0 =
∂

∂θ
‖ŷp − ys(·, θ∗)‖2L2(Ω)

+

(
∂2

∂θ∂θT
‖ŷp − ys(·, θ̃n)‖2L2(Ω)

)
(θ̂L2(Dn)− θ∗),(5.15)

where θ̃n is located between θ∗ and θ̂L2(Dn). Since ŷp is independent of θ,
it is easy to see that

∂2

∂θ∂θT
‖ŷp − ys(·, θ̃n)‖2L2(Ω) →

∂2

∂θ∂θT
‖ǫ(·, θ∗)‖2L2(Ω),

which is invertible by the assumption. Therefore the convergence rate is
given by

∂

∂θi
‖ŷp − ys(·, θ∗)‖2L2(Ω)

=
∂

∂θi
‖ŷp − ys(·, θ∗)‖2L2(Ω) −

∂

∂θi
‖yp − ys(·, θ∗)‖2L2(Ω)
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= 2

〈
yp − ŷp,

∂ys

∂θi
(·, θ∗)

〉

L2(Ω)

(5.16)

≤ 2
√

V ol(Ω)CΦh
k(Dn)‖yp‖NΦ(Ω)

∥∥∥∥
∂ys

∂θi
(·, θ∗)

∥∥∥∥
L2(Ω)

,(5.17)

where the first equality follows from the definition of θ∗ in (3.7) and the fact
that θ∗ is an interior point; the inequality follows from Schwarz’s inequality,
(5.14) and (A.5) in Proposition 1. Hence (5.11) is obtained by combining
(5.15)-(5.17).

If there exists v ∈ L2(Ω) such that yp(x) =
∫
ΩΦ(x, t)v(t)dt, (A.6) in

Proposition 1 can be applied to (5.16), which proves (5.12).

By comparing the results and conditions in Theorems 3 and 4, we can
make the following observations. First, ‖θ̂KO(Dn)− θ′‖ and ‖θ̂L2(Dn)− θ∗‖
enjoy the convergence rate O(h2k(Dn)) under the same conditions. Second,
the L2 calibration has the additional property that, even under much less
restrictive conditions, it still enjoys convergence, though at a slower rate. But
this slower rate is optimal under these conditions because the interpolator
ŷp has the same convergence rate given by (A.5).

6. Least L2 Distance Calibration for Expensive Code. Now we
turn to the case of expensive computer code for which ys cannot be evaluated
for infinitely many times. In this situation we need another surrogate model
for ys. Note that the input space for a computer run is Ω × Θ ⊂ Rd+q.
Let G be the set of design points for the computer experiment with its fill
distance h(G). Suppose Θ is convex. Choose a positive definite function Ψ
over (Ω×Θ)× (Ω×Θ). For kernel Ψ and design G, let ŷs be the interpolate
for ys defined by (2.5). Then we can define the L2 calibration in a similar
way:

θ̂L2(D,G) := argmin
θ∈Θ

‖ŷp(·)− ŷs(·, θ)‖L2(Ω).(6.1)

Note that the only difference from the definition in (5.10) is the replacement
of ys by its interpolate ŷs in (6.1).

We want to study the asymptotic behavior of the L2 calibration for ex-
pensive computer code. First we need to extend the definition of θ∗ in (3.7)
to

θ∗(G) := argmin
θ∈Θ

‖yp(·)− ŷs(·, θ)‖L2(Ω).

Then we have

‖θ̂L2(D,G)− θ∗‖ ≤ ‖θ̂L2(D,G) − θ∗(G)‖ + ‖θ∗(G)− θ∗‖.(6.2)
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If we regard the interpolate ŷs as the true computer output, θ∗(G) can be
viewed as an “L2 projection”. Following similar steps as in the proof of
Theorem 4, we can prove that

‖θ̂L2(Dn,Gn)− θ∗(Gn)‖ = O(hk(Dn))(6.3)

under the same conditions in Theorem 4. It remains to find a bound for
‖θ∗(G)− θ∗‖. The following theorem shows that its rate is slower than that
in Theorem 4.

Theorem 5. Suppose θ∗ is the unique solution to (3.7); Ψ has 2k′ con-
tinuous derivatives with k′ ≥ 3; θ∗ is an interior point of Θ; yp ∈ L2(Ω);

ys ∈ NΨ(Ω×Θ) and ∂2

∂θ∂θT
‖ǫ(·, θ∗)‖2L2(Ω) is invertible. Then ‖θ∗(Gn)−θ∗‖ =

O(hk
′−1(Gn)) as h(Gn) → 0.

Proof. As is in the proof of Theorem 4, the convergence of θ∗(Gn) to θ∗

is a direct consequence of (A.5). As ‖yp(·) − ŷsn(·, θ)‖2L2(Ω) is minimized at

θ∗(Gn), the Taylor expansion gives

0 =
∂

∂θ
‖yp(·)− ŷsn(·, θ∗)‖2L2(Ω)

+

(
∂2

∂θ∂θT
‖yp(·)− ŷsn(·, θ̃n)‖2L2(Ω)

)
(θ∗(Gn)− θ∗),

where θ̃n is located between θ∗ and θ̂L2(Dn). It follows from (5.14) and (A.5)
in Proposition 1 with |α| = 0, 1, 2 that for all θ ∈ Θ,

‖(ys − ŷsn)(·, θ)‖L2(Ω) ≤
√

V ol(Ω)CΨh
k′(Gn)‖ys‖NΨ(Ω×Θ),(6.4)

∥∥∥∥
∂(ys − ŷsn)

∂θi
(·, θ)

∥∥∥∥
L2(Ω)

≤
√

V ol(Ω)CΨh
k′−1(Gn)‖ys‖NΨ(Ω×Θ),(6.5)

∥∥∥∥
∂2(ys − ŷsn)

∂θi∂θj
(·, θ)

∥∥∥∥
L2(Ω)

≤
√

V ol(Ω)CΨh
k′−2(Gn)‖ys‖NΨ(Ω×Θ),

for 1 ≤ i, j ≤ q, which implies

∂2

∂θ∂θT
‖yp(·)− ŷsn(·, θ̃n)‖2L2(Ω) →

∂2

∂θ∂θT
‖yp(·)− ys(·, θ∗)‖2L2(Ω),

which is invertible by the assumption. Now as in Theorems 3 and 4, we have

∂

∂θi
‖yp(·) − ŷsn(·, θ∗)‖2L2(Ω)
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=
∂

∂θi
‖yp(·) − ŷsn(·, θ∗)‖2L2(Ω) −

∂

∂θi
‖yp(·)− ys(·, θ∗)‖2L2(Ω)

= −2

〈
yp(·)− ŷsn(·, θ∗),

∂ŷsn
∂θi

(·, θ∗)
〉

L2(Ω)

+2

〈
yp(·)− ys(·, θ∗), ∂y

s

∂θi
(·, θ∗)

〉

L2(Ω)

= 2

〈
yp(·)− ys(·, θ∗), ∂(y

s − ŷsn)

∂θi
(·, θ∗)

〉

L2(Ω)

(6.6)

+2

〈
(ŷsn − ys)(·, θ∗), ∂ŷ

s
n

∂θi
(·, θ∗)

〉

L2(Ω)

.

Because h(Gn) → 0, (6.4) and (6.5) implies that for sufficiently large n,

∥∥∥∥
∂ŷsn
∂θi

(·, θ∗)
∥∥∥∥
L2(Ω)

≤ 2

∥∥∥∥
∂ys

∂θi
(·, θ∗)

∥∥∥∥
L2(Ω)

.(6.7)

By applying Schwarz’s inequality to (6.6) and using the bounds in (6.4),
(6.5), and (6.7), we obtain ∂

∂θi
‖yp(·) − ŷsn(·, θ∗)‖2L2(Ω) = O(hk

′−1(Gn)). This
leads to the desired result.

Theorem 5, together with (6.2)-(6.3), yields the following result on the
convergence rate of the L2 calibration for expensive computer code.

Theorem 6. Under the assumptions of Theorems 4 and 5, ‖θ̂L2(Dn,Gn)−
θ∗‖ = O(max(hk(Dn), h

k′−1(Gn))).

7. Further Discussions and Remarks. This paper provides the first
theoretical framework for studying modeling and estimation of the calibra-
tion parameters in statistical models that are motivated by and closely relat-
ed to the original Kennedy-O’Hagan (2001) approach. Being the first piece
of such work and because of the space limitations, it has left some issues to
be further considered. The definition of consistency in this paper is based
on using θ∗ in Definition 1 as the “true” calibration parameters. The same
mathematical results should hold if a different positive definite metric is em-
ployed in defining θ∗. The technical details may be more involved but the
same lines of arguments can be used to obtain similar results. A bigger issue
is whether θ∗ is an appropriate definition for the calibration parameters. For
example, suppose we adopt θ′ in (4.6) as the “true” calibration parameters.
Then the KO calibration θ̂KO can be declared consistent according to The-
orem 1. The question is whether θ′ can be used as a legitimate definition for
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the calibration parameters. We would argue no because θ′ depends on the
covariance function Φ, which is part of the modeling assumption. A legit-
imate definition of calibration parameters should not depend on a further
assumption imposed on the model. What if a different Φ function is used in
the modeling assumption? Would or should the definition of consistency be
changed accordingly?

One may also consider other definitions of θ∗ by replacing the L2 norm
by alternatives which have different physical meanings. For example, if the
oscillation of the predictor is of interest, a Sobolev norm, which may relate
to the energy of the system, would be appropriate. The efficient estimation
in such a framework would require a separate investigation.

In spite of the inconsistency calibration results, the Kennedy-O’Hagan
method (which gives a calibration estimator converging to θ′) can give a good
prediction for yp(·). This is supported by the upper bound in Proposition 1.
For a function with a smaller NΦ(Ω) norm, the kernel interpolate is likely
to provide a better approximation because the upper bound given in (A.5)
is smaller. This implies that it is easier to approximate the function ǫ(·, θ′)
than ǫ(·, θ∗). For example, the solid and dashed curves in Figure 1 can be
more easily estimated than the (more fluctuating) dotted curve, although
the former two have greater point-wise absolute values.

Next we turn to the discussions on the simplifications (i), (iii) and (iv) of
assumptions made in Section 4.1. We have relaxed (i) in Section 6 for the
L2 calibration. What about a similar extension to the KO calibration for
the expensive code? As the situation becomes more messy (i.e., the need of
estimating the function ys), there are reasons to believe that the procedure
will remain inconsistent but the mathematical details can be more daunting.
However, until further analysis is done, we are not sure if the KO calibration
would converge to θ′. Regarding (iii), the first part on assuming ρ = 1
can be easily relaxed to an unknown ρ because ρ can be included as part
of the calibration parameters in the theoretical analysis. Its second part
on assuming the Φ function is known can also be relaxed but a rigorous
analysis will require more work. If we assume that the parameters for the
Φ function (such as those in (2.2)-(2.3)) lie in a compact set outside zero,
our analysis should still be applicable because the sequence of estimated
values of these parameters should have a nonzero limit point. For a related
discussion, see Bull (2011). Regarding assumption (iv), we can deal with the
original Bayesian formulation in the KO paper by bringing back the prior
information. Some heuristic calculations suggest that the prior for θ should
have no effect on the asymptotic results given in Theorem 1, provided that θ′

lies on the support of the prior distribution. Because of the space limitations,
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such extensions are deferred to future work.
Our work can be extended in another direction. We assume in (3.5) that

the physical system is a deterministic function yp(x) for each x. To what
extent can the present work be extended to a stochastic physical system,
where yp(x) is random for some or all x? Since this extension would require
additional formulation and mathematical tools, it will be reported in a future
paper.

APPENDIX A: REPRODUCING KERNEL HILBERT SPACES

We give a brief summary of properties regarding reproducing kernel Hilbert
space (RKHS). See Wendland (2005) for details. First, if Ω is compact and
there exists v ∈ L2(Ω), such that

f(x) =

∫

Ω
Φ(x, t)v(t)dt,(A.1)

then for any g ∈ NΦ(Ω),

〈f, g〉NΦ(Ω) =

∫

Ω
v(x)g(x)dx.(A.2)

The existence of v can be guaranteed if f ∈ NΦ∗Φ(Ω) (Haaland and Qian,
2011), where Φ ∗ Φ(x) =

∫
Rd Φ(x − t)Φ(t)dt is the convolution. Further-

more, they show that in this situation there exists a continuous function v
satisfying (A.1) and

‖v‖L2(Ω) ≤ ‖f‖NΦ∗Φ(Ω).(A.3)

Wendland (2005) discusses the error estimates of the kernel interpolation.
First, the following equality

‖ŷ‖2NΦ(Ω) + ‖y − ŷ‖2NΦ(Ω) = ‖y‖2NΦ(Ω),(A.4)

follows from the projective property of RKHS. Proposition 1 gives the error
estimates for the interpolation and the native norm. As before, let h(D) be
the fill distance of the design points.

Proposition 1 (Wendland, 2005, p. 181). Suppose that Φ has 2k con-
tinuous derivatives. Then there exists a constant CΦ such that

sup
x∈Ω

|Dαy(x)−Dαŷ(x)| ≤ CΦh
k−|α|(D)‖y‖NΦ(Ω),(A.5)

if y ∈ NΦ and |α| ≤ k, where ŷ is defined by (2.5); CΦ is independent of X
and y; and xi is any component of x. Furthermore, if there exists v ∈ L2(Ω),
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such that y(x) =
∫
ΩΦ(x, t)v(t)dt. Then the error bounds can be improved as

follows:

sup
x∈Ω

|y(x)− ŷ(x)| ≤ CΦh
2k(D)‖y‖NΦ(Ω),(A.6)

‖y − ŷ‖NΦ(Ω) ≤ CΦh
k(D)‖v‖L2(Ω).(A.7)

We now turn to the extension or restriction of native spaces to another
region. Assume that we have two convex regions Ω1 ⊂ Ω2 ⊂ Rd and Φ is a
positive definite kernel over Ω2 × Ω2.

Proposition 2 (Wendland, 2005, p. 169). Each function f ∈ NΦ(Ω1)
has a natural extension to a function Ef ∈ NΦ(Ω2). Furthermore, ‖Ef‖NΦ(Ω2) =
‖f‖NΦ(Ω1).

Proposition 3 (Wendland, 2005, p. 170). The restriction f |Ω1 of any
function f ∈ NΦ(Ω2) is contained in N (Ω1) with ‖f |Ω1‖NΦ(Ω1) ≤ ‖f‖NΦ(Ω2).

Usually we assume the kernel function has the form Φ(x, y) = R(x − y),
where R is continuous and integrable over Rd. Denote the Fourier transform
of R by R̃. Since R is symmetric, R̃ is real and R can be recovered from R̃.
Proposition 4 shows that the RKHS NR(R

d) can be represented by using
Fourier transforms.

Proposition 4 (Wendland, 2005, p. 139). Suppose that R ∈ C(Rd) ∩
L1(R

d) is a real-valued positive definite function. Then

NR(R
d) = {f ∈ L2(R

d) ∩ C(Rd) : f̃ /
√

R̃ ∈ L2(R
d)},

with the inner product given by

〈f, g〉NR(Rd) = (2π)−d/2

∫

Rd

f̃(w)g̃(w)

R̃(w)
dw.

Under certain conditions, the RKHSs are related to the (fractional) Sobolev
spaces. Let [a] denote the integer part of a real number a.

Proposition 5 (Wendland, 2005, p. 201). Suppose there exist constants
c1, c2 and τ , such that the kernel R satisfies

c1(1 + ‖w‖2)−τ ≤ R̃(w) ≤ c2(1 + ‖w‖2)−τ ,

for w ∈ R with [τ ] > d/2. Then NR(Ω) = Hτ (Ω) with equivalent norms.
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Now consider the Matérn correlation family Rν,φ given by (2.3). Applying
Theorem 6.13 (p. 76) of Wendland (2005), after some direct calculations we
find that the Fourier transformation of this family is

R̃ν,φ(w) = 2d/2(4νφ2)ν
Γ(ν + d/2)

Γ(ν)
(4νφ2 + ‖w‖2)−(ν+d/2).

Thus as a consequence of Proposition 5, we obtain the following corollary.

Corollary 1. For [ν+d/2] > d/2, the RKHS generated by the Matérn
correlation function (2.3) equals the Sobolev space Hν+d/2(Ω) with equivalent
norms.

Let Rθ(x) = R(θx) for θ > 0. The next result, given by Haaland and Qian
(2011), shows that, under certain conditions, (A.7) can be expressed in a
more direct manner.

Proposition 6. Suppose y ∈ NRθ∗Rθ
(Ω), and ŷ is the kernel interpola-

tor given by Rθ. If R has k continuous derivatives, then

‖y − ŷ‖NRθ
(Ω) ≤ CRθ

k/2hk/2(D)‖y‖NRθ∗Rθ
(Ω),

where CR is independent of X, y and θ.

APPENDIX B: PROOF OF THEOREM 2

Without loss of generality, we assume φ0 = 1. Let Rφ(x) = R(x;φ) and
Qφ =

(
φdR(·;φ)) ∗ (φdR(·;φ)

)
. The Fourier transform of Qφ is

Q̃φ = (2π)d/2φ2dR̃φ
2
.(B.1)

We first study the relationship between ‖·‖NQ1
(Ω) and ‖·‖NQφ

(Ω), for φ > 1.

For any f ∈ NQ1(Ω), by Proposition 2, there exists an extension Ef ∈
NQ1(R

d), such that ‖f‖NQ1
(Ω) = ‖Ef‖NQ1

(Rd). Then we have

‖f‖2NQφ
(Ω) ≤ ‖Ef‖2NQφ

(Rd)

= (2π)−d/2

∫

Rd

|Ẽf(w)|2
Q̃φ(w)

dw

= (2π)−d/2

∫

Rd

|Ẽf(w)|2

(2π)d/2φ2dR̃φ
2
(w)

dw
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= (2π)−d/2

∫

Rd

|Ẽf(w)|2
(2π)d/2R̃2(w/φ)

dw

≤ (2π)−d/2 sup
w 6=0

{R̃(φw)/R̃(w)}2
∫

Rd

|Ẽf(w)|2
(2π)d/2R̃2(w)

dw

= (2π)−d/2 sup
w 6=0

{R̃(φw)/R̃(w)}2
∫

Rd

|Ẽf(w)|2
Q̃1(w)

dw

= sup
w 6=0

{R̃(φw)/R̃(w)}2‖Ef‖2NQ1
(Rd)

≤ sup
w 6=0,α≤1

{R̃(αw)/R̃(w)}2‖f‖2NQ1
(Ω),(B.2)

where the first inequality follows from Proposition 3; the first equality follows
from Proposition 4; the second equality follows from (B.1); the third equality
follows from the fact that R̃φ(w) = φ−dR̃(w/φ); the second inequality follows
from factoring out {R̃(φw)/R̃(w)}2; the fourth equality follows from (B.1);
the fifth equality follows from Proposition 4; and the last inequality follows
from condition A3 and Proposition 2.

Let C0 =
∫
Rd R(x; 1)dx. Define integral operator κφ : L2(Ω) 7→ L2(Ω) by

κφ(f)(x) = C−1
0 φd

∫

Ω
R(x− y;φ)f(y)dy, x ∈ Ω,

for any φ > 0. Obviously κφ is a self-adjoint operator, i.e., 〈f, κφ(g)〉 =
〈κφ(f), g〉 for any f, g ∈ L2(Ω). For any x ∈ Ω, let x−Ω = {x−x0 : x0 ∈ Ω}
and φ(x − Ω) = {φ(x − x0) : x0 ∈ Ω}. First we show that for any interior
point x in Ω,

lim
φ→+∞

C−1
0 φd

∫

Ω
R(x− y;φ)dy

= lim
φ→+∞

C−1
0 φd

∫

Rd

I(y ∈ x− Ω)R(y;φ)dy

= lim
φ→+∞

C−1
0 φd

∫

Rd

I(y ∈ x− Ω)R(φy; 1)dy

= lim
φ→+∞

C−1
0

∫

Rd

I(y ∈ φ(x− Ω))R(y; 1)dy

= C−1
0

∫

Rd

R(y; 1)dy = 1,(B.3)

where the fourth equality follows from the dominated convergence theorem
and the fact that x− Ω contains a neighborhood of 0.
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Let rn = C−1
0 φd

∫
ΩR(x− y;φ)dy − 1. Then for any interior point x in Ω,

sup
θ

|κφ(ǫ(·, θ))(x) − ǫ(x, θ)|

= sup
θ

∣∣∣C−1
0 φd

∫

Ω
R(x− y;φ)ǫ(y, θ)dy

−C−1
0 φd

∫

Ω
R(x− y;φ)ǫ(x, θ)dy + rnǫ(x; θ)

∣∣∣

≤ sup
θ

∣∣∣C−1
0

∫

Rd

I(y ∈ φ(x− Ω))R(y; 1)

{ǫ(x− y/φ, θ)− ǫ(x, θ)}dy
∣∣∣ + sup

θ
|rnǫ(x, θ)|

≤ φ−1 sup
θ

‖∇xǫ(x, θ)‖
∣∣∣
∫

Rd

I(y ∈ φ(x− Ω))R(y; 1)‖y‖dy
∣∣∣(B.4)

+|rn| sup
θ

|ǫ(x, θ)|,

where the last inequality follows from the mean value theorem and condition
A1. Using the dominated convergence theorem, we have

∫
Rd I(y ∈ φ(x −

Ω))R(y; 1)(‖y‖/φ)dy → 0, since y/φ lies in the bounded set x − Ω. This
shows that the first term in (B.4) tends to 0. The second term in (B.4) also
tends to 0 because of (B.3). Thus (B.4) shows that κφ(ǫ(·, θ))(x) converges
to ǫ(x, θ) uniformly with respect to θ.

From the definition of native spaces, it is easily seen that

‖f‖2NK(Ω) = c‖f‖2NcK(Ω)(B.5)

for any f , K and c > 0. Since condition A2 holds, by applying (B.2) to
ǫ(·, θ), we see that for any φ > 1 and θ ∈ Θ, ǫ(·, θ) ∈ NQφ

(Ω). Consequently,
from (A.1)-(A.3), for any θ ∈ Θ and φ > 1, there exists vφ,θ ∈ L2(Ω), such
that ǫ(x, θ) =

∫
ΩR(x− t;φ)vφ,θ(t)dt. Thus

ǫ(x, θ) =

∫

Ω
(C−1

0 φd)R(x− t; 1)(C0φ
−d)vφ,θ(t)dt

= κ((C0φ
−d)vφ,θ)(x).(B.6)

Applying (A.3) and (B.2), we have

‖C0φ
−dvφ,θ‖L2(Ω) ≤ ‖ǫ(·, θ)‖NQφ

(Ω)

≤ sup
w 6=0,α≤1

{R̃(αw)/R̃(w)}2‖ǫ(·, θ)‖2NQ1
(Ω) < +∞.(B.7)
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Then

C0φ
−d‖ǫ(·, θ)‖2NRφ

(Ω) − ‖ǫ(·, θ)‖2L2(Ω)

=
〈
ǫ(·, θ), C0φ

−dvφ,θ

〉
L2(Ω)

−
〈
ǫ(·, θ), ǫ(·, θ)

〉
L2(Ω)

=
〈
ǫ(·, θ), C0φ

−dvφ,θ − ǫ(·, θ)
〉
L2(Ω)

=
〈
κφ(C0φ

−dvφ,θ), C0φ
−dvφ,θ − ǫ(·, θ)

〉
L2(Ω)

=
〈
C0φ

−dvφ,θ, κφ
(
C0φ

−dvφ,θ − ǫ(·, θ)
)〉

L2(Ω)

=
〈
C0φ

−dvφ,θ, ǫ(·, θ)− κφ
(
ǫ(·, θ)

)〉
L2(Ω)

≤ ‖C0φ
−dvφ,θ‖L2(Ω)‖ǫ(·, θ)− κφ

(
ǫ(·, θ)

)
‖L2(Ω)

≤ ‖C0φ
−dvφ,θ‖L2(Ω)

∥∥∥ sup
θ∈Θ

∣∣ǫ(·, θ)− κφ
(
ǫ(·, θ)

)∣∣
∥∥∥
L2(Ω)

,(B.8)

where the first equality follows from (A.2); the third equality follows from
the definition of κφ; the fourth equality follows from the self-adjoint prop-
erty of κφ; the fifth equality follows from (B.6); the first inequality follows
from Schwarz’s inequality. Note that (B.7) gives the uniform upper bound
of ‖C0φ

−dvφ,θ‖L2(Ω) with respect to θ. Using the dominated convergence
theorem and (B.4), ‖ supθ∈Θ |ǫ(·, θ)− κφ(ǫ(·, θ)

)
|‖L2(Ω) → 0, as φ → ∞.

Now return to the settings of Theorem 2. Since φn → +∞ as n → ∞,
applying (B.5), we have

sup
θ∈Θ

∣∣∣‖ǫ(·, θ)‖2N
C
−1
0 φdnRφn

(Ω) − ‖ǫ(·, θ)‖2L2(Ω)

∣∣∣ → 0,(B.9)

as n → ∞. On the other hand, we have

sup
θ∈Θ

∣∣∣‖ǫ(·, θ)‖2N
C
−1
0 φdnRφn

(Ω) − ‖ǫ̂n(·, θ)‖2N
C
−1
0 φdnRφn

(Ω)

∣∣∣

= sup
θ∈Θ

∣∣∣‖ǫ(·, θ)− ǫ̂n(·, θ)‖2N
C
−1
0 φdnRφn

(Ω)

∣∣∣

≤ C2
R

√
φnh(Dn) sup

θ∈Θ
‖ǫ(·, θ)‖2N

C
−2
0 Qφn

(Ω)(B.10)

≤
(
C2
RC

2
0 sup
w 6=0,α≤1

{R̃(αw)/R̃(w)}2 sup
θ∈Θ

‖ǫ(·, θ)‖2NQ1
(Ω)

)√
φnh(Dn)

→ 0,(B.11)

where the equality follows from (A.4); the first inequality follows from Propo-
sition 6; the second inequality follows from (B.2); and the limiting relation-
ship follows from conditions A2, A3 and the fact that φnh(Dn) → 0. One
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may notice that (B.10) does not follows immediately from Proposition 6
because in Proposition 6 ŷ is built using the kernel Rθ but here ǫ̂n(·, θ) is
built using Rφn

instead of C−1
0 φd

nRφn
. However, this is not a serious prob-

lem because using (2.4) and (2.5), and after some simple calculations, we
can verify that the two interpolators given by Rφn

and C−1
0 φd

nRφn
respec-

tively are equal to each other. Based on this equivalence, Proposition 6 is
still applicable.

Now we can bound

∣∣∣∣C0φ
−d
n ‖ǫ̂n(·, θ)‖2NRφn

(Ω) − ‖ǫ(·, θ)‖2L2(Ω)

∣∣∣∣ with

sup
θ∈Θ

∣∣∣C0φ
−d
n ‖ǫ̂n(·, θ)‖2NRφn

(Ω) − ‖ǫ(·, θ)‖2L2(Ω)

∣∣∣

= sup
θ∈Θ

∣∣∣‖ǫ̂n(·, θ)‖2N
C0φ

−d
n Rφn

(Ω) − ‖ǫ(·, θ)‖2L2(Ω)

∣∣∣

≤ sup
θ∈Θ

∣∣∣‖ǫ(·, θ)‖2N
C
−1
0

φdnRφn

(Ω) − ‖ǫ̂n(·, θ)‖2N
C
−1
0

φdnRφn

(Ω)

∣∣∣

+sup
θ∈Θ

∣∣∣‖ǫ(·, θ)‖2N
C
−1
0

φdnRφn

(Ω) − ‖ǫ(·, θ)‖2L2(Ω)

∣∣∣ → 0,

where the first equality follows from (B.5); the inequality follows from the tri-
angle inequality; and the limiting relationship follows from (B.9) and (B.11).
Therefore, we have established the following result

θ̂(Rn,Dn) = argmin
θ∈Θ

‖ǫ̂n(·, θ)‖2NRφn
(Ω) → argmin

θ∈Θ
‖ǫ(·, θ)‖2L2(Ω) = θ∗,

as n → ∞. This completes the proof. �
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