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1 Introduction

In October 1919 R.A. Fisher got his first regular job at Rothamsted Experimental

Station. According to the recollection of the station director Sir John Russell, he was

looking for a young mathematician “who would be prepared to examine our data and

elicit further information that we had missed” (Box, 1978, p. 96). By 1926, in a mere

seven years, Fisher had invented the ANalysis Of VAriance (ANOVA) and Design Of

Experiments (DOE). The rest is history, as the two methods are viewed as among

the most important scientific developments in the first half of the 20th century.

Fisher’s work in DOE was inspired by the agricultural experiments at Rothamsted.

It had made inroads to industrial experiments, particularly in light industry such as

textiles. Its wide-spread applications in industry came after World War II because of

the needs of massive industrialization. The main difference between agricultural and

industrial experiments is that the former takes a longer time, needs more planning and

is subject to uncontrollable variations in the field while the latter can be conducted in

the lab or factory floor and the duration is shorter. There are also more input factors

in industrial experiments as their purpose is often the improvement or optimization

of processes. Unlike agricultural experiments which use blocking more extensively,

industrial experiments have more control variables and factorial designs are used to

conduct such experiments. Even though the basic ideas of factorial designs were

developed before the war by Fisher, Yates and Finney, their big push came after

the war, especially the work of the Wisconsin School led by George Box. Then the

complexity of relationships between factors became a new research issue. When Mike

Hamada and I were preparing our book (Wu and Hamada, 2000), we were looking

for principles that govern the relationships between factorial effects of various orders

analogous to the principles of replication, blocking and randomization in Fisher’s
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development of DOE. In Section 2, I will describe them as the principles of effect

hierarchy, sparsity and heredity. In tracing their historical origins or precedents for

preparing the Fisher Lecture, I found with satisfaction and somewhat to my surprise

the early work of Yates (1935, 1937), who was closely associated with Fisher and his

DOE work. Some impacts of these principles will also be discussed.

Effect aliasing is a basic concept and necessary evil in fractional factorial design.

Since the pioneering work of Finney (1945), it has been universally accepted that, if

two factorial effects are (fully) aliased, they cannot be disentangled unless more data

are collected. In 1988 I asked the following question: can two aliased effects be “de-

aliased” without adding more runs? On the face of it, this did not seem possible. By

looking into the notion of interactions more closely, it will be shown in Section 3 that

this is indeed possible. The main underlying idea is to view a two-factor interaction

as the difference between two Conditional Main Effects. This new method is thus

termed CME analysis. A successful application of this method will be illustrated

with an industrial experiment at General Motors of Canada.

Another major development after World War II is robust parameter design. It was

pioneered by G. Taguchi (1987) largely based on engineering concepts and his many

years of experience working with industries in Japan. It has made an impact in the

practice of quality and productivity improvement. His new paradigm has also led to

the rejuvenation of research on design and analysis of experiments, especially in the

period 1985-2000. Section 4 gives a brief description of the methodology and discusses

their major deviations and differences from the traditional strategy in conducting

physical experiments.

In the long history of DOE, physical experiments have played a dominant role

for its first 70-80 years. As the needs over time changed, physical experiments took
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different forms. It started with agriculture in its founding days, moved to process in-

dustries as witnessed by Box’s work in 1950’s at Imperial Chemical Industries (Box,

2013), and to manufacturing as witnessed by Taguchi’s (1986, 1987) work on robust

parameter design for variation reduction and quality improvement. The material in

Sections 2-4 gives a personalized glimpse of some work on physical experiments in this

long period. In the last decade, the interest and focus have gradually shifted from

physical to virtual experiments. Because of the advances in complex mathematical

modeling and information technology, virtual experiments on a computer, or called

computer experiments, have become popular in engineering and scientific investiga-

tions. Computer simulations can be much faster or less costly than running physical

experiments. Furthermore, physical experiments can be difficult to conduct as in the

detonation of explosive materials or infeasible when rare events like landslides or hur-

ricanes are observed. Section 5 gives a generic description of computer experiments

and outlines some challenges they face. There are two major approaches to the mod-

eling and computation of computer experiments: stochastic and numerical. Some of

the difficulties for each approach are discussed. Connections to uncertainty quantifi-

cation (UQ), which originated in applied mathematics, are also made. Concluding

remarks are given in Section 6.

2 Guiding principles for factorial designs

The following three principles, which govern the relationships among factorial effects,

are given in Wu and Hamada (2000, 2009):

(i) Effect hierarchy: Lower order effects are more likely to be important than higher

order effects; effects of the same order are equally likely to be important.
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(ii) Effect sparsity: The number of relatively important effects is small.

(iii) Effect heredity: For an interaction to be significant, at least one of its parent

main effects should be significant.

More discussion and references on the three principles can be found in Sections 4.6

and 9.5 of Wu and Hamada (2009). Here we focus on their historical connections and

impacts. The term “effect hierarchy” was coined in Wu and Hamada (2000, 2009)

but the concept was implicit in design textbooks for decades. This concept was in

fact mentioned explicitly in the pioneering work of Yates on factorial designs. In

Yates (1935, p. 209), he said “From physical considerations and practical experience,

(interactions) may be expected to be small in relation to error . . . ” Yates (1937,

p. 18) stated this concept more explicitly “. . . higher-order interactions . . . are

usually of less interest than the main effects and interactions between two factors

only.” Yates used this concept to guide data analysis. In addition to helping data

analysis, the more precise version given here can be used to justify the choice of

“optimal” fractions of factorial designs such as the maximum resolution criterion and

the minimum aberration criterion (Wu and Hamada, 2009, Section 5.2). It has also

been used in justifying other optimal design criteria (see Mukerjee and Wu, 2006).

The term “effect sparsity” was coined by Box and Meyer (1986) but the concept

went further back to Box and Hunter (1961). On page 314 of the 1961 paper, they

stated “In some situations the total number of variables k is large, but only a few

(of them) are expected to have any effect.” A similar idea was stated in the last

paragraph of page 341 of the same paper. The concept can be used to justify the use

of screening designs such as 2k−p designs with large fractions. It can also be used to

guide data analysis. This concept has its precedent in quality engineering. The Pareto

chart (or Pareto histogram) is one of the seven tools in quality control, sometimes
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referred to as the magnificent seven (Ishikawa, 1971). The quality guru Juran found

out from his consulting experience that, in many quality investigations, a vital few

of the defects account for most of the total effect while the remaining ones (the

trivial many) account for little of the total effect. The Pareto histogram is obtained

by rearranging the histogram of defects in the descending order of frequencies. He

argued that quality investigation should focus on the top few defects or causes. While

this is technically very easy, its underlying philosophy is deep. Juran developed this

concept in the late 1940’s and gave it the name “Pareto principle”. For a fascinating

account, read Juran (1974, Section 2, pages 16-18). Given this historical background,

we may call effect sparsity the Pareto principle in DOE.

Effect heredity was proposed by Hamada and Wu (1992) in the context of model

selection for factorial experiments whose effects have complex aliasing relationships.

Its original purpose was to rule out incompatible models in model search. The version

stated here is called weak heredity by Chipman (1996) because it allows either one

of the parent factors to be present in the model. If both parent factors should be

present, it is called strong heredity. Strong heredity is closely related to the notion

of “marginality” (Nelder, 1977; McCullagh and Nelder, 1989). But the purpose of

marginality was different, i.e., to maintain invariance of the response surface under

scaling and translation of the factors of an experiment. When Mike and I wrote

our 1992 paper, we had no idea if this concept was already available in the design

literature. To my pleasant surprise, it was stated in Yates (1937, p. 12) “. . . factors

which produce small main effects usually show no significant interactions.” As in

the case of effect hierarchy, Yates used it to guide data analysis. The more precise

version stated here and those in Chipman (1996) can be used for model selection

and data analysis. Since effect heredity is used to rule out incompatible models, it

appears natural that it should have wider use beyond designed experiments. Lately
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it has been successfully applied to variable selection in general regression settings. Its

generic use can be described as follows. For a given model search algorithm, effect

heredity is imposed in the search procedure. The first two such applications are to

LARS (Efron et al., 2004) by Yuan, Joseph, and Lin (2007) and to the nonnegative

garrote (Breiman, 1995) by Yuan, Joseph and Zou (2009).

Each of the three principles can be given a Bayesian formulation. A main advan-

tage of the Bayesian approach is that it can define the principles in a quantitative

way. Consider, for example, the effect sparsity principle. If the prior probability of a

factor being significant is small, it indicates a stronger degree of sparsity. Therefore

the prior probability gives a quantitative measure of sparsity. Similarly, the weak and

strong effect heredity principles have a Bayesian formulation and the degree of inheri-

tance can be determined by choosing appropriate values in the prior parameters. For

details, see Chipman (1996) or Section 9.5 of Wu and Hamada (2009).

Let me conclude this section by giving an example of analysis that benefits from

use of these principles. It is well known that many of the nonregular factorial designs

have complex aliasing among their factorial effects. The 12-run Plackett-Burman

design with 11 factors is probably the most “notorious” because each of its two-factor

interactions is partially aliased (with coefficient 1/3 or -1/3) with any main effects

not present in the two-factor interaction (Wu and Hamada, 2009, Section 9.1). The

aliasing relationship is called complex because each main effect has 45 (=
(
10
2

)
) partial

aliases. This complex relationship was viewed as a disadvantage of these designs in

the standard literature (up to 1992). Therefore they were mostly used for the purpose

of factor screening, i.e., to estimate the main effects only. Hamada and Wu (1992)

argued that, in view of effect sparsity, the number of terms in a selected model in

actual data analysis is much smaller than what the combinatorial computation on the
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size of model search would indicate (prior to analysis). Thus effect sparsity can be

used to reduce the complexity of effect aliasing. Then they employed effect heredity

to drastically reduce the space for model search by eliminating models that violate

the effect heredity relationship. The strategy was successfully illustrated on two real

experiments, one using a 12-run Plackett-Burman design with seven factors and the

other using a 36-run orthogonal array with seven three-level factors and one two-level

factor. Details can be found in Chapter 9 of Wu and Hamada (2009).

3 Conditional main effect (CME) analysis

Let me start by briefly reviewing the concept of effect aliasing. Consider the 24−1

design given in Table 1 with eight runs and four factors A, B, C, D. It is a half

fraction of the 24 design with I = ABCD as its defining relation. The two-factor

interactions (henceforth abbreviated as 2fi’s) AB and CD are given in the last two

columns of the table. One can see that the two columns share the same column vector

(known as a contrast in DOE). This is a consequence of the relationship I = ABCD.

The 2fi’s AB and CD are said to be aliased (Finney, 1945) because they represent

the same contrast. In group-theoretic terms, both of them belong to the same coset.

As in Wu and Hamada, we will call them fully aliased if there is a need to distinguish

it from the notion of partial aliasing, which will be used below. See also Wu and

Hamada (2009, pages 290 and 422). For the 24−1 design with I = ABCD, there are

seven degrees of freedom, each of which is associated with a coset. Since each coset

represents one degree of freedom, it is not possible to distinguish AB and CD.

It has been widely accepted since the pioneering work of Finney (1945) that aliased

effects cannot be disentangled. In 1988 I raised the question: is it possible for aliased

effects in two-level designs to be “de-aliased” without adding runs? The key to unlock
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this puzzle is to revisit the definition of interaction. Suppose there are two factors A

and B, each at two levels denoted by + and −. The standard definition for the A×B

interaction in design textbooks is

INT(A,B) =
1

2
{ȳ(A+ |B+) + ȳ(A− |B−)}

−1

2
{ȳ(A+ |B−) + ȳ(A− |B+)}, (3.1)

where ȳ(A + |B+), ȳ(A − |B+), ȳ(A + |B−) and ȳ(A − |B−) are respectively the

average value of the response y at the four settings A + B+, A − B+, A + B− and

A−B−. Following Wu and Hamada (2009, Section 4.3.2), we consider an alternative

and equivalent definition using the notion of conditional main effects. Specifically, we

define the conditional main effect (abbreviated as cme) of B at the + level of A as

CME(B|A+) = ȳ(B + |A+)− ȳ(B − |A+). (3.2)

Thus we can interpret CME(B|A+) as the main effect of B conditional on A being

at the + level. The definitions of CME(B|A−), CME(A|B+), and CME(A|B−) can

be similarly made. Then it is straightforward to show that

INT(A,B) =
1

2
{CME(B|A+)− CME(B|A−)}

=
1

2
{CME(A|B+)− CME(A|B−)}. (3.3)

These relationships suggest that we can view the two cme’s CME(B|A+) and

CME(B|A−) as two components of the interaction INT(A,B). More generally we

should consider an interaction together with its two parent main effects in a three-

dimensional (3d) space. In the traditional approach this space consists of the three

orthogonal components: INT(A,B) and its two main effects A and B. Using the

cme concept, this space can be reparameterized as: CME(B|A+), CME(B|A−) and

the main effect A of their conditioning factor. These three effects are also mutually
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Table 1: A 24−1 design with I = ABCD

A B C D AB = CD
− − − − + +
− − + + + +
− + − + − −
− + + − − −
+ − − + − −
+ − + − − −
+ + − − + +
+ + + + + +

orthogonal but, unlike the first case, their corresponding vectors do not have the same

length. We can also reverse the roles of A and B to get a third parametrization of the

3d space. Returning to Table 1, we can see that its six columns form a five-dimensional

space because of the relationship AB = CD. Consider now Table 2. Its columns A,

B|A+ and B|A− form a 3d space, where B|A+ and B|A− are the shorthand notation

for CME(B|A+) and CME(B|A−). Similarly C, D|C+ and D|C− in Table 2 form

another 3d space. By amalgamating these two spaces, their joint space has five

dimensions because it is the same as the one in Table 1. However the six components

of this 5d-space are not mutually orthogonal, i.e., some of them are partially aliased.

Because no effects in this space are fully aliased, we can use forward-type variable

selection to identify significant effects among the six candidate effects. Therefore we

are able to “de-alias” the pair AB and CD through some cme’s in the 5d space.

We call this approach the CME analysis. In this problem non-orthogonality is the

saving grace. By contrast, the traditional approach cannot resolve aliasing because

it is based on Table 1, which has five orthogonal components but also a pair of fully

aliased components.

So far the CME analysis is described in the context of the parametrization given
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Table 2: A 24−1 design with its eight effects

A B C D B|A+ B|A− D|C+ D|C−
− − − − 0 − 0 −
− − + + 0 − + 0
− + − + 0 + 0 +
− + + − 0 + − 0
+ − − + − 0 0 +
+ − + − − 0 − 0
+ + − − + 0 0 −
+ + + + + 0 + 0

in Table 2. It can be extended to general two-level fractional factorial designs. The

generic idea is to identify all aliased pairs of 2fi’s and their corresponding cme’s. Then

use variable selection to identify significant effects from a set of candidate effects

consisting of some main effects, clear 2fi’s, and cme’s that correspond to the aliased

2fi’s. (Note that a clear 2fi is not aliased with the main effects and any other 2fi’s;

see p. 214 of Wu and Hamada (2009).) The trick lies in the choice of a candidate

set of effects and also in the variable selection strategy. Since this involves further

algebraic development, a systematic analysis strategy based on the CME concept will

be given in Su and Wu (2014). One example of the choice of candidate set is given

in the following analysis.

The CME analysis is now illustrated with some data from GM of Canada (Brajac

and Morey, 1987). This was the first data set I applied the method to in 1988.

A simulation was run to mimic an assembly subprocess called marriage. A vehicle

component such as an engine or axle was carried by an automatic guided vehicle

(AGV) to the marriage station to be fastened to a vehicle underbody. There were six

factors that could affect the outcome of this operation as measured by its throughput

within a 40-hour period. The simulation study was used to understand which of the
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Table 3: Factors and levels, car marriage simulation experiment

Level
Factor − +

A. No. of lanes in brake cell 3 4
B. % of cars with ABS 0 100
C. lane selection logic FIFO free flow
D. No. of Automatic Guided Vehicles 24 34
E. % repair in marriage 8 16
F . marriage base cycle time 124 124 + 29

factors and their levels (see Table 3) had significant effects on the throughput. A

16-run 26−2 design with the defining relations I = ABCE = ABDF = CDEF was

chosen for the experiment. It is easy to show that this is a resolution IV design and

that each of its 2fi’s is aliased with one or two other 2fi’s. This is an ideal case to

show the potential advantage of the CME analysis because all of its 2fi’s are aliased

and thus the traditional approach cannot be used to estimate interactions with no

ambiguity.

The design matrix and data are given in Table 4. The run order of the experiment

was randomized. Each response value in the table is called job loss because it is

obtained by subtracting the throughput value (from the simulation run) from a target

value of 2880.

First we tried the traditional approach by using the half-normal plot to identify

significant effects. From Figure 1, it is clearly seen that the main effect E (repair

rate) is the most significant and much larger than the other effects. This is obvious

because repair rate is expected to heavily influence the throughput (or equivalently

the job loss). It is followed by two other main effects C and A. The R2 value for the

three effects is 97.6%. If the next effect CF is added to E, C, A, the resulting model,

called Model 1, has a slightly larger R2 (= 98.29%). The p values for C, A and CF
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Table 4: Design matrix and data, car marriage simulation experiment

A B C D E F y
− − − − − − 13
+ + − − − − 5
− − + − + − 69
− − − + − + 16
+ − + + − − 5
+ − + − − + 7
+ − − + + − 69
+ − − − + + 69
− + + + − − 9
− + + − − + 11
− + − + + − 69
− + − − + + 89
+ + + − + − 67
+ + − + − + 13
− − + + + + 66
+ + + + + + 56

are respectively 1.9%, 2.2% and 5.6%. This model has four terms. Furthermore, even

if CF is significant, we cannot give it a good interpretation because CF is aliased

with DE (which follows from the relation I = CDEF ). The CME analysis can be

handily used here. First we need to find a candidate set of effects for performing

variable selection. This set consists of all the six main effects and all the eight cme’s

associated with DE and CF . Stepwise or forward variable selection identifies three

effects: E, C|F+, and A, which form Model 2. It has three terms with R2 = 98.26%.

The p values for C|F+ and A are respectively 0.37% and 1.8%, which are more

significant than C, A and CF in Model 1. Clearly Model 2 is better than Model 1.

Finally we use this result to demonstrate the practical meaning of a significant

conditional main effect. The C × F interaction plot is given in Figure 2. It is seen

that the conditional main effect of C at F+ (the solid line) is much larger than that

13



Figure 1: Half-normal plot of effects, car marriage simulation experiment

at F−. So what is the engineering meaning of a significant C|F+? It says that

the lane selection logic (factor C) has a significant effect on job loss for larger cycle

time (F+) but not for smaller cycle time (F−). It was explained in the original

GM study that the main difference between F− and F+ is that the latter added

another 29 seconds of cycle time by completing the remaining work in one of the

buffer positions outside the marriage station. It is only in this situation that the

choice of lane logic (first-in-first-out or free flow) makes a difference on job loss. By

comparison, it would be difficult to give a meaningful engineering interpretation of a

significant CF interaction in view of its definition in (3.1), even if CF were a clear

effect. Another point to note is that the CME analysis can be applied even when

the 2fi’s in a design are clear. This is particularly useful when the conditional main

effects are more meaningful or interpretable than the two-factor interactions (defined
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Figure 2: C × F interaction plot, car marriage simulation experiment

in (3.1)) for a given problem.

The concept of conditional main effects has been used in other statistical modeling.

For example, Wu and Hamada (2009, Section 7.9.1) used it in nested effects modeling

for experiments with sliding levels. It also has applications beyond engineering. Two

examples are given here for illustration. If varieties differ in their response to environ-

mental change, there is a genotype × environment interaction. Denote the genotype

by A and the environment by B, each assumed at two levels. Then their interaction

can be defined as in (3.1). If the breeder cares only about the difference between the

two varieties across the environment, then we can use the main effect of A to measure

this difference. If, however, the difference of responses in the two varieties varies sub-

stantially with the environment, then the conditional main effect of A given B+ (or

B−) may be more relevant because of the need to develop breeds that adapt locally
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to the specific environment. More discussion on genotype × environment interactions

can be found in Lynch and Walsh (1998). See, especially, Figures 6.6, 6.7 and 22.1.

The second example is taken from social sciences. Consider a study on a population

of schools. There are two experimental factors (interventions): a performance-based

bonus scheme for teachers (A), and a quarterly review by a team of external experts

(B). Each factor has two levels: 0 (no intervention) and 1 (intervention applied).

In this case, the conditional main effect of B given A at level 0 is of more interest

than the unconditional main effect of B. The schools that do not receive the bonus

scheme are likely to be dissatisfied or lack motivation in comparison to the schools

who receive the scheme. Consequently, the former group is likely to benefit more

from a quality review as compared to the latter. Thus, this conditional main effect

represents how much the quality review can excite a group of less motivated teachers.

Finally, an interesting question (rasied by a referee) is whether or how the adoption

of the CME analysis would have any implications on the design of the study.

4 Robust parameter design

Robust parameter design is another major development after World War II. It is

less well known in the statistical world than other major developments like response

surface methodology. This is primarily due to its use of engineering jargon and the

sometimes confusing use of statistical concepts by its protagonist G. Taguchi. Taguchi

classified the input factors of a system (product or process) into two types: control

and noise. Control factors are those whose values remain fixed once they are chosen in

an experiment. They can include design parameters in product or process design such

as part dimensions and heat treatment time. Noise factors are those that are hard to

control during the normal process or use condition. They can be variations around
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nominal values in a mechanical design or temperature fluctuation in an oven. The

gist of robust parameter design (or simply robust design) is to reduce the response

variation of a system by choosing the settings of some control factors to make it less

sensitive (i.e., more robust) to noise variation. The methodology has been widely

used in quality and productivity improvement and has become part of the toolkit

in quality engineering. The idea is illustrated in Figure 3, where Y represents the

response, X the control factors and Z the noise factors. In traditional design (see

Figure 3(a)), the response variation is reduced by reducing the noise variation of the

input Z while the nominal value of X is fixed at X1. Recognizing that the reduction

of noise variation can be time-consuming or costly, Taguchi suggested an innovative

way to reduce response variation, which is depicted in Figure 3(b): keep the noise

variation intact but move the nominal value of X from X1 to X2. In order for this

to be effective, the strategy must exploit interactions between the control and noise

factors. Therefore the control × noise interactions, denoted by CN , play a pivotal

role in robust design. Details on robust design can be found in books by Taguchi

(1986, 1987), Montgomery (2005) and Wu and Hamada (2009).

Because of its engineering origin and the goal of variation reduction, some key

aspects of robust design are quite different from the traditional strategy. Three will

be discussed here. First, the emphasis shifts from location effects as in Fisherian

ANOVA to dispersion effects because of its focus on variation reduction. This can be

seen in Taguchi’s ubiquitous two-step procedures for parameter design optimization.

(Several versions of the two-step procedure can be found in Taguchi (1987) and Wu

and Hamada (2009).) In most cases the first step is to reduce a dispersion mea-

sure like maximizing the signal-to-noise (SN) ratios he proposed for various classes of

problems. Only in the second step of adjustment is the location effect (e.g., sample

mean) considered. This change of focus has implications in the analysis and opti-
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(a)

(b)

Figure 3: Variation reduction through robust parameter design

mization strategies, which will be briefly discussed in the third point below. Second,

the major role played by the CN interactions make them as important as the control

main effects C and the noise main effects N . This violates the intent of the effect

hierarchy principle. It has a major influence on the development of optimal design

theory for robust design experiments. Thanks to the effect hierarchy principle which

treats effects of the same length equally, design of traditional factorial experiments

can make use of Galois theory through the defining contrast subgroup that defines

the fractional factorial design. This is no longer true in designing fractional factorial

experiments for robust design applications. See, for example, Wu and Zhu (2003).

Finally, Taguchi’s use of performance measures (e.g., his SN ratios) for system op-

timization often leads to a different modeling strategy. The prevailing approach in

statistics is to find a good model to fit the response data and then optimize the per-

formance measure based on the identified model. Taguchi’s preferred approach is to

model directly the performance measure like SN ratios and then perform optimization
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based on the fitted model. In Wu and Hamada (2009, Chapter 11), these two ap-

proaches are called respectively the response modeling and the performance measure

modeling. If a performance measure modeling leads to spurious interactions, then it

may not work well. Otherwise, the direct modeling of a measure to be optimized can

be appealing to users, even when the response modeling enjoys some advantages in

statistical efficiency. An in-depth comparison of the two approaches will have benefits

beyond robust design because the same issue also arises in other contexts.

5 Virtual experiments on a computer: modeling

and computation

Because of the rapid advance in high-fidelity mathematical modeling and fine-scale

computation, it has become practical to use computer simulations to mimic real-

world phenomena. I will first focus on deterministic simulations, which are called

deterministic computer experiments in the statistical literature. A simulation is called

deterministic if the same input values will lead to the same output. Consider, for

example, the use of computer simulations to design a heat exchanger (Qian et al.,

2006). Input factors that can affect the performance of a heat exchanger include cell

topology, dimensions, wall thickness, conductivity of solid, temperature of heat source,

and so forth. It is common to use a computational fluid dynamics (CFD) solver such

as FLUENT to solve the heat transfer problem. In this case the simulation output

of interest (or the response) is the maximum total heat transfer. For the purpose of

heat exchanger design, a higher response value is desired. The engineering problem

is to use these simulations over a variety of the input values to identify combinations

of the input factors that maximize the response. Denote the input values by a vector

x = (x1, . . . , xp) and the output by y. The relationship between y and x is given
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y = g(x), where g is often a complicated function. The computation of g(x) can be

done in a variety of ways, depending on the nature of the problem. One can use finite

element analysis (FEA) to solve a set of partial differential equations (pde’s) such as

in FLUENT. Alternatively, one can use discrete-event simulation (DES) to analyze

dynamic, stochastic systems which involve queuing systems, e.g., queue of jobs to be

processed on a printer. A good example is the car marriage simulation experiment in

Section 3.

The computation of g(x) can be precise but also time-consuming. If a large

number of simulations over the x combinations need to be performed, which is often

required in product design and optimization, it will be infeasible to use computer

simulations to complete the task. Instead a surrogate model (or meta model) can

be built by taking the results of the simulations as input values. There are broadly

two approaches to building surrogate models: stochastic and numerical. Typically a

surrogate model has an explicit or computationally efficient form for the relationship

between y and x. Thus it can be used to evaluate the y value for any x outside the

chosen sites {x1, . . . ,xn} much more expediently than the original simulations. This

surrogate model is also referred to as an emulator as opposed to the original simulator.

The availability of an emulator gives the investigator the capability to study the

function g over a wide portion of the input region. If the predicted values from the

surrogate model do not conform to the intuition or expectation of the investigator,

he/she can return to the simulator to perform more simulations at the suspicious

sites. If these results are quite different from the predicted values by the emulator,

the emulator can be updated based on the expanded set of values from the simulation.

Thanks to the interpolating property of an emulator like kriging (see below), the

observed discrepancy at the x sites in the second round of the simulation will be

reduced to zero. The relationship between the simulator and the emulator is depicted
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Figure 4: Statistical surrogate modeling of computer experiments

in the left portion of Figure 4. The two-way flow enables simulation and emulation

to be conducted iteratively. A physical experiment or field observations can also be

brought into the picture (lower-right portion of Figure 4). The physical observations

together with the simulation results can be used jointly in training a surrogate model.

A good example is the problem of estimating the calibration parameters in a computer

model by using physical observations (Kennedy and O’Hagan, 2001). The objective

of the investigation is depicted in the top box of Figure 4. It may be prediction,

optimization or robustness (Santner et al., 2003). It can be based on the original

simulation results or on the surrogate model results, especially if the former does not

have enough data.

Kriging is the most popular stochastic approach to modeling computer experi-

ments. The relationship between y and x can be described by the following model:

y(x) = µ(x) + Z(x), x ∈ Rp, (5.1)

where µ(x) =
∑m−1

i=0 βifi(x), fi(x) are some known functions, βi’s are some unknown

parameters, Z(x) is a stationary stochastic process with mean 0 and covariance func-

tion Cov{Z(x+ h), Z(x)} = σ2R(h;θ), and θ is a vector of unknown correlation

21



parameters. The linear model part µ in (5.1) captures the global trend, whereas the

stochastic model part Z in (5.1) captures the local trend. The stochastic model in

(5.1) can also be given a Bayesian interpretation, i.e., it imposes a Bayesian prior on

the space of deterministic functions g(x). See Section 2.3 of Santner et al. (2003) for

details. Suppose we perform computer experiment at n sites {x1, . . . ,xn} and obtain

the corresponding function values y = (y1, . . . , yn)
′. The predictor of y at any x can

be obtained as follows:

ŷ(x) = f(x)′β̂ + r(x)R−1(y − Fβ̂), (5.2)

where β̂ = (F′R−1F)−1F′R−1y. Here f(x) = (f0(x), . . . , fm−1(x))
′ is the vector

of known functions at x, F is the n × m regression model matrix defined as F =

(f(x1), . . . , f(xn))
′, R is the n × n correlation matrix whose ijth element is R(xi −

xj;θ), and r(x) = (r1(x), . . . , rn(x))
′ is the n × 1 correlation vector with ri(x) =

R(x − xi;θ). The correlation parameters θ are usually estimated from data using

the maximum likelihood method. An important property for the kriging predictor

ŷ(x) in (5.2) is that it is an interpolator, i.e., ŷ(xi) = yi. It is especially desirable for

deterministic computer simulations.

The kriging technique originated in the spatial statistics literature but the mathe-

matical work goes back earlier. See Cressie (1990) for its history. Its use in computer

experiments started in the 1980’s, especially due to the work of Sacks, Ylvisaker,

Mitchell, Welch, etc. See the book by Santner et al. (2003) for references. However,

its applications to computer experiments have some major differences from those in

spatial statistics. Because a simulation problem can have a large number of input

factors, the input dimension for computer experiments can be much higher than two

or three (which is common in spatial statistics). Therefore variable selection becomes

an important issue. Also the nature of the input factors can be quite different, e.g.,
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temperature, dimension, and velocity. Most of the spatial statistics studies are obser-

vational in nature while the computer experiment studies may require a careful design

of experiments. Space-filling designs such as Latin hypercubes (McKay et al., 1979)

are the most commonly used in computer experiments. Special classes of designs like

nested and sliced designs (Qian, 2009; Qian and Wu, 2009) were developed to meet

the needs of specific problems. Finally the interpolating property as described above

is desirable for deterministic computer experiments but is not required for spatial

statistics.

As the research in computer experiments has rapidly expanded in recent years,

it is a timely question to ask if there are new principles that can be used to guide

the design and modeling of computer experiments. It is natural to ask if the three

principles of Fisher are applicable here. Replication is irrelevant to deterministic

experiments because replicating the same input will not produce a different output

in deterministic simulation. It is applicable to stochastic experiments but does not

rise to the level of a fundamental principle as it is quite straightforward and does not

help to address the complexity of the problem. Blocking and randomization are not

relevant even to stochastic experiments. How about the three principles for factorial

designs discussed in Section 2? Effect sparsity can be invoked if there are many

input factors and a majority of them are assumed to be inert. This may hold in the

case of sensitivity analysis if the input factors have additive effects on the response

(Morris, 1991). Because the unknown function g in computer experiments can be

quite complicated, effect hierarchy and heredity principles may be too simplistic to

be useful. It is thus a major challenge to formulate new principles that can be used to

guide work in computer experiments. One clue may come from how we classify errors

in an emulator. According to Haaland and Qian (2011), there are three sources of

error: parameter estimation error, numeric error, and nominal error. The last two

23



types are not present in physical experiments as they arise in the computational side

of the problem. If we recall that Fisher’s three principles are used to control or

reduce various sources of errors in physical experiments, some new principles may be

formulated for assessing and reducing these three types of errors. Such work will be

interesting and novel, especially work on numeric and nominal errors.

A potential difficulty with the kriging technique lies in the computation of the

inverse matrix R−1 in (5.2). For large sample size n and/or large input dimension

p, the matrix R can be nearly singular. The numerical instability in computing R−1

can be serious because it can lead to large variability and poor performance of the

predictor ŷ in (5.2). See Peng and Wu (2014) for some relevant algebraic results. The

practical use of kriging for large and/or complex problems has been hindered by this

limitation. Various attempts along the stochastic lines to circumvent this problem

are available but none can claim to have resolved the difficulty for large practical

problems. The main challenge lies in making the trade-off between achieving nu-

merical stability and obtaining high prediction accuracy. An alternative approach is

to use some fast and stable numerical approximation to the unknown function g(x)

while maintaining a tight bound on the interpolating errors. Methods known to s-

tatisticians includes radial basis interpolating functions, smoothing splines, MARS,

and neural networks (Hastie et al., 2011). However, some of them do not have a

built-in stochastic element to form the basis for performing uncertainty quantifica-

tion (UQ). UQ is a term coined in applied mathematics. The forward version of UQ is

on quantifying the uncertainties in system outputs propagated from uncertain inputs.

General information on UQ can be found in the book by Le Mâıtre and Kino (2010).

Computer experiments which were developed by statisticians in parallel to work in

applied mathematics can be viewed as UQ because any statistical modeling has the

necessary stochastic elements to give it the inferential capability, i.e., the capability
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to assess stochastic errors in prediction, estimation, testing and variable selection. In

the applied mathematics literature, a popular approximation method that possesses

the inferential capability is the technique of generalized polynomial chaos (gPC). But

this method has some limitations too, especially for high dimensional problems. See

Ghanem and Spanos (1991) and Xiu (2010) for details. One challenge for the numer-

ical approach is to develop methods that can perform fast and stable computation,

handle large problems (i.e., large sample and dimension), and have inferential capa-

bility. Existing theoretical results on the approximation accuracy of these methods

often depend on unknown parameters or upper bounds with unknown parameters,

and are thus of limited value in practice. Statistical ideas such as cross-validation can

be used to derive data-driven bounds to overcome this difficulty. See, for example,

Zhang and Qian (2013).

6 Concluding remarks

This paper gives a personalized glimpse of some advances in physical experiments in

the last 60 years. Three topics are discussed: effect principles for factorial designs, a

new method called CME for de-aliasing aliased effects, and robust parameter design.

As in the case of response surface methodology, they were developed primarily in

response to needs in industrial experimentation. Although some of the concepts and

details in these works are different from those in the Fisherian approach, they clearly

show that Fisher’s legacy and influence have continued from agricultural experiments

to industrial experiments and beyond.

For virtual or computer experiments, Fisher’s influence will not diminish but there

are more challenges. As argued in Section 5, there is a need of new principles that

can guide the design and analysis of computer experiments. For the kriging approach,
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the need to find an efficient and stable computational method for large problems is a

major challenge. For the numerical approach, the challenge is of a different nature,

namely, how to bring in stochastic elements in order to give it the inferential capa-

bility? Interaction with the applied mathematics community on the emerging field

of uncertainty quantification (UQ) is a promising new opportunity for statisticians.

If the interface with applied mathematics can lead to major new work and paradigm

shift, it will open a new chapter in the history of DOE.
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