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Stochastic Finite Element Method

Consider the stochastic elliptic problem defined on (2, 7, P) and
D=[0,b? CRY, d=2:

{V((xw)Vu( w)) =f(x) InQxD, ™)
(w,x) =0 on Q x OD,

with deterministic forcing f(x) and a(x,w) = a(x,y(w)),
Yy = (yl,...,y/v) S F, Wlth Fn :yn(w),F = Fl X - X FN g RN.
We impose the additional assumptions on a(x, y), that

(A1) a(x,y(w)) = amin + h(x,y(w)) where the y;'s are independent
random variables, and h : RN x R? — R.

(A2) 30 < amin < amax < oo such that
P(amin < a(X,y(w)) < amax) = 1, Vx €D

Also, let p(y) = HnN:1 pn(y) be the joint density of the vector y.

Nick Dexter T, Miroslav Stoyanov i, Clayton Webster?, & Guannan Zhang'T

Complexity of gSGM and gSCM for PDEs with Random Coeff.



Stochastic Finite Element Method

The weak form of problem (1) is now given by: find u € Hy(D) ® L%(T)
such thatv € Hy(D) @ L2,(T)

[ [ atx)Vutx)9rix.p)aspts)ay
I'JD

(2)
— [ [ ropixpasotsiay
IJD
With some additional assumptions on the smoothness of the data
a(x,y) it is well known that the solution depends analytically on the
parameters y, € I',,.
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Stochastic Finite Element Method

Let {qu}fh:l be a finite basis for W,,(D) C H}(D), and set
J, = dim(W,,(D)). We are interested in the semi-discrete
approximation I

uy, (va) = Z“/(y)¢](x) 3)

j=1
given by: find u;, € W;,(D) such that
[ )V (x3) - V@ ax= [ fomx)x paeint. (@
D D
for all v;, € W, (D). Foranyy € T, define

u(y) = [Ml(y)v u2(y)7 s 7“1/1()’)]'

Then, the semi-discrete problem (4) can be written algebraically as

Au(y)=f p-ae. inl. (5)

where A(y) is the stochastic finite element stiffness matrix.
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Stochastic Global Polynomial Subspaces

Let p € N denote the polynomial order of an approximation and
consider a sequence of increasing, nested multi-index sets 7 (p) such
that

J(0) ={(0,...,0)} and Jp)STp+1).

Let Pz, (') C L} (T") denote the multivariate polynomial space over I
corresponding to the index set 7 (p), defined by

P =1 n) € T(P)m € rn}. 6)

N
Pr(T) = span{ 1
n=1

We set M, = dim {P 7, }. The fully-discrete global polynomial
approximation is now denoted by u;,y, € Wi(D) Q@ Pz, (I').
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Examples of 7 (p):

@ Tensor Products (TP):
T(p) = {p € NV|maxp, <p}, M= (p+ 1)

@ Total Degree (TD):

jTD(p {p =\

N
S pn Sp}, M = (N + p)!/(N1p!

n=1

@ Hyperbolic Cross (HC):

Tuc(p) = {p e NV

N
> " logy (pa + 1) < logy(p + 1)}
n=1

@ Sparse Smolyak (SS):

N 0 forp=0
Tss(p) = qp € NV (pa) <v(P) ¢, p) = 1 forp=1
) {p ’ ;7 ! } ! { [log,(p)] fori >2.
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Global stochastic Galerkin methods

Let {,, (yn)};io denote a set of L? -orthonormal polynomials in T,

Forp € J(p), we define N

Up(y) = H7/)pn()’n)-
n=1

Then we see that

[ 01 090) 85 =TT [ a1y alon)o3) @0 = 1L

n=1

Given the bases {¢;}/"; C W,(D) and {4y }pe7(») C P(p) (), the
gSGM approximation is defined by

B = 3 @0 = S i dxG0). ()

PEIT (P) peJ(p) j=1

Our goal is then to solve for the coefficients {u,;},

p € Jp),j=1,...,J, which requires the substitution of (7) into the
weak formulation (2), resulting in a (possibly nonlinear) coupled
system of size J,M,, x J,M,,.
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Global stochastic Galerkin methods - An Example

@ u, = [up1,...,upy,), the vector of nodal values of the FEM
solution corresponding to the p-th stochastic mode.

@ A Galerkin projection onto the span of {1 },c 7(,) Yields the
following linear algebraic system: for all p € J (p)

> ([ 40501 0200) )y = [ Fin1o v (8)
e

P'eEI(p

KP»P FP

@ The coefficient matrix K of the system (8) consists of (M,)? block
matrices, each of size J, x J,, i.e., the size of A(y).

@ Evenif K is sparse, it is impractical to form and store the matrix
explicitly.
© The structure and sparsity of K depends entirely on a(x,y).

© This approach requires rewriting the Galerkin solver for each
new choice of a(x,y).
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Global stochastic Galerkin methods - NISP

A more convenient and robust choice is to perform an “offline”
projection of a(x,y) onto span{v, (y) }4c7(w). i-€. Write a(x,y) as

=D @@ = D ag(x)t, )
n=1 qeT (W)
truncating the expansion on some finite basis. Then for all ¢ € 7 (w),

(oo}

/ Za,, ) )00) = D (g = [ alx )i 9)olr)

n=1

Letting esg be the error in SG approximation, we chose w such that
la(X,3) = > -ge 7w 9a(X)q(¥)[|22 < €sc, Substituting the finite
expansion of a(x,y) yields, forall j,j’ = 1...,J,

A0~ 3 ) [ @@V Torax= Y )i,

qeT (w) qeT (w)

where [A,];; = [, a4(x) V¢;(x) - Vg (x) dx can be computed
component-wise.
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Global stochastic Galerkin methods - NISP

Given a sufficiently resolved stochastic finite element stiffness matrix
A(y) m D 4c 70 [Aqltq (), we substitute A(y) into (8) and obtain, for all

p' € Jp),
S % | [ 6000 dy} up=Fy.  (9)
pEI () €T (W)
By defining

[Gq]p’,p:A¢q¢p’prdy and K= Z [Gq]®[Aq]v (10)

reJ(w)

where [G,] ®[A,] denotes the Kronecker product of [G,] and [4,], we
obtain the gSGM coupled system of equations, namely,

Ku =F, (11)

with K symmetric and positive definite.
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Global stochastic Galerkin methods - Cost (solve)

Given Ku = F, where K = 5_ _ 7,,[G,] ®[A,], we define

Ng= > #of nonzeros in [G,] = # [<¢qu¢p/> # 0} e

q€J (w) pp' €T ()

, (12)

pictorially Ng = # of black pixels in the matrices

o

where each pixel represents a block matrix of the size of the original
finite element system.
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Global stochastic Galerkin methods - Cost (solve)

Given Ku = F, where K = 5_ _ 7,,[G,] ®[A,], we define

Ng= Y #ofnonzerosin [G,] = # [(wquwpﬁ +# 0} s (12)
qeT (W) pp' €T (p)
then Ng is the total number of nonzeros in the {[G,]}4ec.7(v)-
The cost of solving the gSGM method with CG without
preconditioning is then given by
Wygj?eM ~ Ng * Niter, (1 3)

where Ny., is the number of iterations of the system (11) required to
converge to a given tolerance in CG. With preconditioning for a block
diagonal Jacobi preconditioner, this becomes

WM ~ (NG + M,,) * Nigr. (14)

solve
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Global stochastic Collocation methods

@ Choose a set of pointi Hu, = {y, € T}, according to the
measure p(y)dy = [[,—; pu(ya) dyn

@ For each k solve the FE solution u, (x,y,) given a(x,y,)

@ Interpolate the sampled values:
uS (x,3) = S0 ug, (x,3) Li(v), yielding the fully discrete
gSCM approximation u$y;" € Wy(D) ® Pz (T), where
Ly € Py (I') are suitable combinations of global (Lagrange)
interpolants

My
B0~ [ (x2)o)dy = 3w ur) [ L))
k=1
precomputed weights wy
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gSCM - Cost (solve)

Therefore, the cost of solving for gSCM is given by

solve

M,
gSCM (k)
14 ~ E :Niteﬂ
k=1

where N*) is the number of iterations required by CG to solve the kth
FEM solution uy, (x,y,). Again, the cost of solving the gSGM is

gSGM __,
Wsolve ~ NG * Niter~

Both costs are in terms of total number of matrix vector products
required to find the corresponding approximation.
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gSCM - Cost (solve)

Therefore, the cost of solving for gSCM is given by

solve

My,
SCM k
Wg ~2 § :Ni(tez7
k=1

where N*) is the number of iterations required by CG to solve the kth
FEM solution uy, (x,y,). Again, the cost of solving the gSGM is

WM = (NG + M) * Niger.

solve

Both costs are in terms of total number of matrix vector products
required to find the corresponding approximation.
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Numerical Example

We now present some results using these methods to compare
gSGM and gSCM. Recall the stochastic elliptic problem

{ —V - (a(x,y)Vu(x,w)) = cos(x;) sin(xy) inQ x D,
u(x,w) =0 on Q x dD,

with D = [0, b]?, and random coefficient a(x, w) with one-dimensional

(layered) spatial dependence given by

VL
2

log(ay(x,y) —0.5) = 1+ Y (w) (

where Y; ~ U([—+/3,/3]) i.i.d.,

12 N
)+ L en@n), (15)
n=2

—(|2| 7L)?
o= (VL)' ? exp <(biﬂ)> cifn>1 (16)
and 3]s
sin le , ifneven,
on(X) := [ | (17)
cos ( =), ifnodd.
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Numerical Example

We now present some results using these methods to compare
gSGM and gSCM. Recall the stochastic elliptic problem

{ —V - (a(x,y)Vu(x,w)) = cos(x;) sin(xy) inQ x D,
u(x,w) =0 on Q x dD,

with D = [0, b]?, and random coefficient a(x,w) with one-dimensional
(layered) spatial dependence given by

N2
loglav(x) - 05) = 14 1) ()4 S Gmnton(e). (19

then this represents the truncation of a one-dimensional random field
with stationary covariance

—(x — xz)z) ’

Covllog(ay — 0.5)](x1,x2) = exp ( I

and L. = 1/64 is the correlation length.
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Numerical Results

Here, N = 8 and L. = 1/64 (highly isotropic).

Convergence v.s. DOF for SCFEM and SGFEM

Convergence v.s. cost for SCFEM and SGFEM

10 T 10 T
-e-8C-CC -e-8C-CC
s - *-5C-sCC - A - *-5C-sCC
N - A-SC- TS - A-SC-
R SC-GL «ta SC-GL
s - 8-8G-TD N N - 8-8G-TD
107° Sed 10° > >
% K
N\ . AN
N
L 10° e 10° A AN
<) N S ~ N
I S 2 A
= NS = DN
W S w s
A \\\ » N
~ \ N
- A - Yo )]
10 AN 10 RN
N v
N
107 5 N 107 \b
)
‘0"0 0 2 3 “ ‘07W 0 2 4 6 8
10 10 10 10 10 10 10 10 10 10
Degrees of freedom Cost

Nick Dexter T, Miroslav Stoyano

Clayton Webster?, & Guannan

Complexity of gSGM and gSCM for PDEs with Random Coeff.



Numerical Results

Here, N = 8 and L. = 1/64 (highly isotropic).
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Conclusions and Future Work

@ Need to apply this cost metric to preconditioning strategies. Cost
then depends in part on the preconditioner used.

@ Discussion about strategies for preconditioning the Stochastic
Collocation Method.

@ Need to obtain complexity to reach a given error estimates for
the projection.

@ Need to compare setup cost for both methods.
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Extra Slides - Linear Test Case

Consider the problem of isotropic thermal diffusion, that is (1) with a
stochastic conductivity coefficient

(Xw —b() —I—Zyn

with by = 1 and y,(w) ~ U(—0.99, —0.2), and deterministic forcing
function

f(x) = 100x£(x),  where  F=[0.4,0.6]
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Extra Slides - Linear Test Case
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Extra Slides - Linear Test Case

Convergence vs SDOF of SCFEM with CC, CC-slow, and GL:
and SGFEM with TD and SM compared
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Extra Slides - Linear Test Case

Here, N =8
Convergence vs cost of SCFEM with CC, CC-slow, and GL
and SGFEM with TD and SM compared
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Extra Slides - Linear Test Case

Here, N = 8

Convergence vs cost of SCFEM with CC, CC-slow, and GL
and SGFEM with TD and SM compared
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