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Stochastic Finite Element Method

Consider the stochastic elliptic problem defined on (2, 7, P) and
D=[0,b? CRY, d=2:

{V((xw)Vu( w)) =f(x) InQxD, ™)
(w,x) =0 on Q x OD,

with deterministic forcing f(x) and a(x,w) = a(x,y(w)),
Yy = (yl,...,y/v) GF,WIth Fn :yn(w),F:FI X - X FN QRN
We impose the additional assumptions on a(x, y), that

(A1) a(x,y(w)) = amin + h(x,y(w)) where the y;’s are independent
random variables, and h : RN x R? — R.

(A2) 30 < amin < amax < oo such that
P(amin < a(X,y(w)) < amax) = 1, Vx €D

Also, let p(y) = HnN:1 pn(y) be the joint density of the vector y.
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Stochastic Finite Element Method

The weak form of problem (1) is now given by: find u € Hy(D) ® L%(T)
such thatv € Hy(D) @ L2,(T)

[ [ atx)Vutx)9rix.p)aspts)ay
I"JD (2)
- / / FOVR,p)dxp(y)dy.

With some additional assumptions on the smoothness of the data
a(x,y) it is well known that the solution depends analytically on the
parameters y, € I',,.
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Stochastic Finite Element Method

Let {¢;}, be a finite basis for W,,(D) C H}(D), and set
J, = dim(W,,(D)). We are interested in the semi-discrete
approximation i

th(x?y) - Zuj(y)¢j(x) (3)

J=1

given by: find u;, € W;,(D) @ L (T") such that
/ a<X7y)VMJh (va) ' ijh (X) dx = /f(x)vlh (X) dx p-a.e. in Fa (4)
D D

for all v;, € W, (D). Forany y € T, define
u(y) = [u(y), w2(y), -, us, ()l
Then, the semi-discrete problem (4) can be written algebraically as
Auly)=f p-ae. inl. (5)

where A(y) is the stochastic finite element stiffness matrix.
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Stochastic Global Polynomial Subspaces

Let p € N denote the polynomial order of an approximation and
consider a sequence of increasing, nested multi-index sets 7 (p) such
that

J(0) ={(0,...,0)} and Jp)STp+1).

Let Pz, (') C L} (T") denote the multivariate polynomial space over I
corresponding to the index set J (p), defined by

P =1 n) € T(P)m € rn}. 6)

N
Pr(T) = span{ 1
n=1

We set M, = dim {P 7, }. The fully-discrete global polynomial
approximation is now denoted by u;,y, € Wi(D) Q@ Pz, (I').
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Examples of 7 (p):

@ Tensor Products (TP):
T(p) = {p € NV|maxp, <p}, M= (p+ 1)

@ Total Degree (TD):

jTD(p {p =\

N
S pn Sp}, M = (N + p)!/(N1p!

n=1

@ Hyperbolic Cross (HC):

Tuc(p) = {p e NV

N
> " logy (pa + 1) < logy(p + 1)}
n=1

@ Sparse Smolyak (SS):

N 0 forp=0
Tss(p) = qp € NV (pa) <v(P) ¢, p) = 1 forp=1
) {p ’ ;7 ! } ! { [log,(p)] fori >2.
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Global stochastic Galerkin methods

Let {,, (yn)};io denote a set of L? -orthonormal polynomials in T,

Forp € J(p), we define N

Up(y) = H7/)pn()’n)-
n=1

Then we see that

[ 01 090) 85 =TT [ a1y alon)o3) @0 = 1L

n=1

Given the bases {¢;}/"; C W,(D) and {4y }pe7(») C P(p) (), the
gSGM approximation is defined by

Jn
szzhsﬁ(;p(x’y) = Z up (X)p (y) = Z Z p.; 9 (X)p (y).- (7)
peT(p) peI (p) j=1

Our goal is then to solve for the coefficients {u,;},

p € Jp),j=1,...,J, which requires the substitution of (7) into the
weak formulation (2), resulting in a (possibly nonlinear) coupled
system of size J,M,, x J,M,,.
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Global stochastic Galerkin methods - An Example

@ u, = [up1,...,upy,), the vector of nodal values of the FEM
solution corresponding to the p-th stochastic mode.

@ A Galerkin projection onto the span of {1 },c 7(,) Yields the
following linear algebraic system: for all p € J (p)

> ([ 40501 0200) )y = [ Fin1o v (8)
e

P'eEI(p

KP»P FP

@ The coefficient matrix K of the system (8) consists of (M,)? block
matrices, each of size J, x J,, i.e., the size of A(y).

@ Evenif K is sparse, it is impractical to form and store the matrix
explicitly.
© The structure and sparsity of K depends entirely on a(x,y).

© This approach requires rewriting the Galerkin solver for each
new choice of a(x,y).
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Global stochastic Galerkin methods - NISP

A more convenient and robust choice is to perform an “offline”
projection of a(x,y) onto span{v, (y) }4c7(w). i-€. Write a(x,y) as

=D @@ = D ag(x)t, )
n=1 qeT (W)
truncating the expansion on some finite basis. Then for all ¢ € 7 (w),

(oo}

/ Za,, ) )00) = D (g = [ alx )i 9)olr)

n=1

Letting esg be the error in SG approximation, we chose w such that

lla(x,y) — quj(w) aqg(x)1a(v)|l12 < esg, Substituting the finite
expansion of a(x,y) yields, forall j,j’ = 1...,J,

A0~ 3 ) [ @@V Torax= Y )i,

qeT (w) qeT (w)

where [A,];; = [, a4(x) V¢;(x) - Vg (x) dx can be computed
component-wise.
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Global stochastic Galerkin methods - NISP

Given a sufficiently resolved stochastic finite element stiffness matrix
A(y) m D 4c 70 [Aqltq (), we substitute A(y) into (8) and obtain, for all

P €Jp),
> 5 | [Adudi e |y =Fp @)
PET (P) 4€T (W)
By defining
[Gq]p’,p:A¢q¢p’prdy and K= Z [Gq]®[Aq]v (10)

reJ(w)

where [G,] ®[A,] denotes the Kronecker product of [G,] and [4,], we
obtain the gSGM coupled system of equations, namely,

Ku =F, (11)

with K symmetric and positive definite.

Nick Dexter, & Clayton Webster ¥ Complexity of gSGM and gSCM for PDEs with Random Coeff.



Global stochastic Galerkin methods - Cost (solve)

Given Ku = F, where K = 5_ 7, [G,] ®[A,], we define

Ng = Z number of nonzeros in [G,], (12)
9€T (w)

pictorially Ng = # of black pixels in the matrices

where each pixel represents a block matrix of the size of the original
finite element system.
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Global stochastic Galerkin methods - Cost (solve)

Given Ku = F, where K = 5_ _ 7, [G,] ®[A,], we define
Ng = Y number of nonzeros in [G,], (12)
g€ (w)
then Ng is the total number of nonzeros in the {[G,]}4c.7(w)-
The cost of solving the gSGM method with CG without
preconditioning is then given by
Weee! = No * Nicer, (13)

where Ny, is the number of iterations of the system (11) required to
converge to a given tolerance in CG. With preconditioning for a block
diagonal Jacobi preconditioner, this becomes

WEM ~ (NG 4+ M) % Ni. (14)

solve
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Global stochastic Collocation methods

@ Choose a set of pointi Hu, = {y, € T}, according to the
measure p(y)dy = [[,—; pu(ya) dyn

@ For each k solve the FE solution u, (x,y,) given a(x,y,)

@ Interpolate the sampled values:
uS (x,3) = S0 ug, (x,3) Li(v), yielding the fully discrete
gSCM approximation u$y;" € Wy(D) ® Pz (T), where
Ly € Py (I') are suitable combinations of global (Lagrange)
interpolants

My

Elu(x) ~ / (%, 3)p0) dy = 5 (x,,) / Cey)oly) dy
k=1
precomputed weights wy
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gSCM - Cost (solve)

Therefore, the cost of solving for gSCM is given by

solve

M,
gSCM (k)
14 ~ E :Niteﬂ
k=1

where N*) is the number of iterations required by CG to solve the kth
FEM solution uy, (x,y,). Again, the cost of solving the gSGM is

gSGM __,
Wsolve ~ NG * Niter~

Both costs are in terms of total number of matrix vector products
required to find the corresponding approximation.
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gSCM - Cost (solve)

Therefore, the cost of solving for gSCM is given by

solve

My,
SCM k
Wg ~2 § :Ni(tez7
k=1

where N*) is the number of iterations required by CG to solve the kth
FEM solution uy, (x,y,). Again, the cost of solving the gSGM is

WM = (NG + M) * Niger.

solve

Both costs are in terms of total number of matrix vector products
required to find the corresponding approximation.
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Numerical Example

We now present some results using these methods to compare
gSGM and gSCM. Recall the stochastic elliptic problem

{ =V - (a(x,y)Vu(x,w)) = cos(x;) sin(x,) inQ x D,
u(x,w) =0 on Q x dD,

with D = [0, b]?, and random coefficient a(x, w) with one-dimensional
spatial dependence given by

12 N
log(ay(x,y) —0.5) = 1+ Y (w) (\/27?L> + ZCngon(X)Y,,(w) (15)
where =
(|2 2
Gu = (VaL)'? exp <(bg“) ) Lifn>1 (16)
and .
sin %Iml , ifneven,
Pn(x) == 3] (17)
cos le , if nodd.
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Numerical Results

Error

Convergence v.s. DOF for SCFEM and SGFEM

Convergence v.s. cost for SCFEM and SGFEM
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Numerical Results
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Conclusions and Future Work

@ Need to apply this cost metric to preconditioning strategies. Cost
then depends on the preconditioner used.

@ Need to obtain error estimates for the spectral projection. We
need complexity to reach desired error estimates.

@ Discussion about strategies for preconditioning the Stochastic
Collocation Method.
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