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Motivation rh) e

= Forward uncertainty propagation is key for many UQ tasks
= Modern architectures hold potential for large speedups
(MS29, Phipps)

= This talk: preconditioning for systems arising from PCE
approaches with ensembles

= Context for this talk:
= Steady-state finite dimensional model problem:

Find u(¢) such that f(u,&) =0, £: Q — I C RM, density p
= (Global) Polynomial Chaos approximation
P
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: Non-intrusive polynomial chaos (NIPC)
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Simultaneous ensemble @%

propagation
| f(u, &) =0 8oruino>o

PDE:
= Propagating m samples — block diagonal (nonlinear) system:

F(U,Y) =0, U:Z€i®ui, Y=Z€i®yi, F:Z€i®f(uiayi)

1=1 1=1 =1

= Commute Kronecker products (just a reordering of DoFs):

Fc(Uc’ Yc) =0, U, = Z"M@ei’ Y. = Zyi®ei7 F. = Z f(uza yz)®ez

= Each sample-dependent scalar replaced by length-m array
=  Automatically reuse non-sample dependent data
= Sparse accesses amortized across ensemble
= Math on ensemble naturally maps to vector arithmetic




Algebraic multigrid (AMG) .

e Scalable solution method for elliptic PDEs
* Typically used as preconditioner to Krylov method

* [dea: capture error at multiple resolutions:
— Smoothing reduces oscillatory error (high energy)
— Coarse grid correction reduces smooth error (low energy)
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Algebraic multigrid (AMG) ) .

* Scalable solution method for elliptic PDEs
* Typically used as preconditioner to Krylov method
* |[dea: capture error at multiple resolutions:

— Smoothing reduces oscillatory error (high energy)
— Coarse grid correction reduces smooth error (low energy)
*R’s, P'sand A’s generated by AMG algorithm
* R.=P/ for symmetric problems
*A=RA., P, .QEO} Au= O
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Algebraic multigrid (AMG) &

e Scalable solution method for elliptic PDEs
* Typically used as preconditioner to Krylov method

* [dea: capture error at multiple resolutions:
— Smoothing reduces oscillatory error (high energy)
— Coarse grid correction reduces smooth error (low energy)

*R’s, P'sand A’s generated by AMG algorithm

| Solving Au = f with initial guess v —J
« ( . Q0 Au=
< | Pre-smoothing ] ‘ .
Calculate residual r = f — Au
Restrict r to coarser grid \ ol A e,=r,
0 0.

Interpolate e to original grid

Correct v(v=v te)
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Algebraic multigrid (AMG) .

* Scalable solution method for elliptic PDEs
* Typically used as preconditioner to Krylov method

* |[dea: capture error at multiple resolutions:
— Smoothing reduces oscillatory error (high energy)
— Coarse grid correction reduces smooth error (low energy)

*R’s, P'sand A’s generated by AMG algorithm

QL] Au=
* Two main variants O\ ®
* Classical (Ruge-Stuben) AMG ol Aw=r o
* Coarse grid DOFs are subset of fine DOFs ¢ ;z-)§°
: “é&\ /o;
* Smoothed aggregation € & V0j S

e Coarse grid DOFs are groups of fine DOFs




Smoothed Aggregation — Main Kernels

= Setup o] Au=f

= Form coarse unknowns (aggregation) .

= Prolongator creation
= P=(I—wD'A)Plen)
= Matrix matrix multiply

®

S
= A,=RA,, P @\,% o,:g\
= Load balancing of A,’s S Y Ol S°°
(o) - =
= Smoother initialization e ) Aze; ’2' Q¢
" Apply

= Matrix-vector multiply SN
' ()maxlevel]




Prolongator Construction

Au=

= Group fine unknowns into aggregates —}—|
to form coarse unknowns

= Based on matrix stencil coefficients

= DOFs at node are aggregated together




Prolongator Construction Au=

= Group fine unknowns into aggregates —}—}—| | ..—J—@
to form coarse unknowns
= Based on matrix stencil coefficients : . .
= DOFs at node are aggregated together
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Prolongator Construction Ausf

= Group fine unknowns into aggregates
to form coarse unknowns

i I W
= Based on matrix stencil coefficients :

j

= DOFs at node are aggregated together

(0) (0)

= Partition given (near) nullspace across ne n
aggregates to have local support. Call ne n’ <= local QR’s
it N, n n’
[ ©) | 4) 4)
o 1 ne n
) ) n(5) n(5)
n mn — g 1
= Calculate QR=N,,, . L
= Set P“’=Q and N,,=R. e |




Prolongator Construction

= Group fine unknowns into aggregates
to form coarse unknowns

= Based on matrix stencil coefficients
= DOFs at node are aggregated together

= Partition given (near) nullspace across
aggregates to have local support. Call
it Ny,

= Calculate OR=N,, .
= Set P"=0Q and N, =R.

= Form final prolongator P = (I — wDA)P"

Au=f
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Prolongator Construction

= Group fine unknowns into aggregates
to form coarse unknowns

= Based on matrix stencil coefficients
= DOFs at node are aggregated together

= Partition given (near) nullspace across
aggregates to have local support. Call
it Ny,

= Calculate OR=N,, .
= Set P"=0Q and N, =R.

= Form final prolongator P = (I — wDA)P"
" By construction, N, = PN,

Au=f
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and nullspace of A_is N,.,. (Recall A, = P"AP.)
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Multigrid for Ensembles ) e

= 1) AMG templated on ensemble scalar type
= Single AMG preconditioner per ensemble

= Ensemble scalar type propagated through stack to multigrid solver

= From multigrid perspective, ensemble can be viewed as vector of
scalars = system of PDEs

= 2) AMG based on mean-based system
= Single AMG setup

= AMG coarsens matrix that is mean of the ensemble matrix

= From AMG perspective, system can be viewed as scalar PDE




MueLu Multigrid Library

Ji o

C++ framework for implementing multigrid methods
= Can explicitly use Tpetra (sparse linear algebra)
= Can implicitly use Kokkos (node-level parallelism)
= Templated on ordinal, scalar, node types

Aggregation
= Uncoupled, coupled _
= Matrix-based dropping, distance-based dropping
= Design permits alternative AMG and GMG implementations

Tpetra / Kokkos
Epetra / EpetraExt

SOR, Chebyshev, {1 Gauss-Seidel, incomplete factorizations,
additive Schwarz, line smoothing™* (Ifpack2)
SuperlLU direct solver

Algorithms for Poisson, elasticity, Helmholtz, convection-diffusion, Maxwell
(eddy current)




Numerical Experiments

= Sandia Linux test bed “Shannon”
= two 8-core Sandy Bridge Xeon E5-2670s per node
= 128 GB per node
= OpenMPI, Intel 13.1, OpenMP

= Problem description
= Nonlinear diffusion equation
—kViu+u?=0
3-D, linear FEM discretization

Cubic domain, 64*3 mesh

KL-like random field model for diffusion coefficient

= Single-node performance




CG iterations, no preconditioning @

cI epsemble UQ dim (#random var.)

size 3 B 7

1 853 871 869
10 16 1350 1160 1110

32 1830 1180 1120
- e_nsemble UQ dim

size 5 7

1 852 853 845
1.0 16 1390 1130 1010

32 1910 1180 1050

o Q d
3 5 7

1 800 800 800
0.1 16 1460 977 867

32 2060 1100 913

cl=correlation length



CG iterations, ensemble-based AMG

. e_nsemble UQ dim
size 5 7
1 45.1 44.9 44.9
10 16 55.8 48.2 46.2
32 73.9 48.3 46.4
- e_nsemble UuQ dim
size 5 7
1 45.1 44.9 44.9
1.0 16 55.4 48.1 46.1
32 74.7 48.3 46.4
o Q d
3 5 7
1 45.0 44.9 44.9
0.1 16 55.8 48.1 46.1
32 73.9 48.3 46.5
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CG iterations, mean-based AMG ) .

cl ensemble
size

ensemble
size

408 470

ensemble
size




National

Conclusions )

= Future work
= Optimization of mean-based preconditioner
= Further investigate space of AMG options
= |ntroduce Kokkos kernels into multigrid setup
= Reuse across ensembles

= Muelu public release in fall of 2014

= Trilinos: www.trilinos.org
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