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Introduction : Motivation

PDEs with Random Coe�cients

• Stochastic sampling methods for random PDEs are computationally
expensive: each sample point corresponds to a PDE solve.

• Traditionally, we try to improve single level methods by reducing the
number of samples/solves: Quasi Monte Carlo, (anisotropic) sparse
grids, adaptive grids

• For a given accuracy, multilevel methods seek to reduce the
complexity by spreading computational cost evenly across several
resolutions of the spatial discretization.
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Introduction : Motivation

History of the Multilevel Method

Multilevel methods for SPDEs derive from multigrid methods for the FEM,
and have been used most commonly in the context of Monte Carlo
methods:

• Multilevel Monte Carlo for numerical integration (S. Heinrich, 2001)

• Multilevel Monte Carlo path simulations for computational finance
(M. Giles, 2008)

• Since applied to a variety of SPDEs, MLQMC, etc.
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Introduction : Model Problem

Model Problem - Linear Elliptic SPDE

Find u 2 L2⇢(�,H
1
0 (D)) such that for almost every y 2 �

r · (a(y, x) ·ru(y, x)) = f (y, x) (1)

We assume that a, f are such that this problem has a unique solution rep-
resented in terms of y 2 �, a finite dimensional random vector.

Such a PDE might represent ground water flow, etc.
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Introduction : Numerical Methods

Common Single Level Methods

Monte Carlo Method

• Most popular method

• Simple to implement, easily parallelizable

• Convergence rate O(M�1/2) is dimension independant, but relatively
slow

Spectral Galerkin Methods

• Higher rate of convergence

• Degrees of freedom are coupled, leading to a large linear system

• Su↵ers from the curse of dimensionality
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Introduction : Numerical Methods

Stochastic Collocation

For stochastic collocation we choose a set of (interpolatory) points
{yj}Mj=1 ⇢ �, and for each yj solve the deterministic PDE

r · (a(yj , x) ·ru(yj , x)) = f (yj , x), (2)

using the finite element method to obtain a solution uh(yj , x).

Finally, we
construct our approximation by interpolation:

IMuh(y, x) =
MX

j=1

cj(x) j(y) (3)

For this scheme, we need to solve M systems of size nh. For high
dimensional spaces �, the number of points M needed to obtain a good
approximation can be huge!
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Multilevel Stochastic Collocation : Formulation

Main Idea: Suppose we have a sequence of finite element solutions
uhk (y) 2 Vhk , (with u�1 = 0). Multilevel methods are based on the
following simple identity:

uhK (y) =
KX

k=0

uhk (y)� uhk�1
(y).

With Monte Carlo methods, we can compute expectation using sample
averages:

E(uhK (y)) ⇡ uMLMC
hK

=
KX

k=0

1

MK�k

MK�kX

j=1

�
uhk (yj)� uhk�1

(yj)
�
.
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Multilevel Stochastic Collocation : Formulation

For stochastic collocation, we interpolate the di↵erences at di↵erent
resolutions. Suppose we have a sequence of interpolation operators {Ilk}
with increasing approximation properties. Now the multilevel
approximation is given by:

uML
K =

KX

k=0

IlK�k

�
uhk � uhk�1

�
.

We can also approximate functionals of the solution '[u] in a similar way:

'ML
K [u] =

KX

k=0

IlK�k

�
'[uhk ]� '[uhk�1

]
�
.
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Multilevel Stochastic Collocation : Formulation

uML
K =

KX

k=0

IlK�k

�
uhk � uhk�1

�
, uh�1 = 0.

• k = 0: IlK [uh0 ]
...

• k = K: Il0 [uhK � uhK�1
]
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Multilevel Stochastic Collocation : Formulation

Error Splitting

We examine the method by considering the discretization errors
independently:

ku � uML
K k  ku � uhK k| {z }

I

+ kuhK � uML
K k| {z }

II

 ".

Now to compute the computational cost, we assume that the spatial
discretization converges in h as

I  Csh
↵
K ,
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Multilevel Stochastic Collocation : Computational Cost

The term II can be further split apart using the triangle inequality:

II = k
KX

k=0

(uhk � uhk�1
)� IlK�k

(uhk � uhk�1
)k


KX

k=0

k( I� IlK�k
)(uhk � uhk�1

)k.

Assume that the stochastic interpolation operators converge according to

k( I� IlK�k
)(uhk � uhk�1

)k  CI M
�µ
K�k h

�
k ,

=) II 
KX

k=0

CI M
�µ
K�k h

�
k .
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Multilevel Stochastic Collocation : Computational Cost

Error Balancing

Finally, we compute the cost of the multilevel method using the metric

Cost =
KX

k=0

MK�k C
FEM
k h

KX

k=0

MK�k h
��
k . (4)

We can ensure I  "/2 by requiring

Cs h
↵
K  "

2

This fixes the mesh maximum mesh size (and the lower level meshes).
Then we may choose the interpolation operators Ilk to satisfy

II 
KX

k=0

CI M
�µ
K�k h

↵
k  "

2
.

and such that they minimize the computational cost.
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Multilevel Stochastic Collocation : Computational Cost

Theorem: [Gunzburger, J, Teckentrup, Webster]

Under our assumptions, for any " > 0 there exists an integer K such that

ku � uML
K kL2⇢(�;H1

0 (D))  "

and

CostML
" .

8
>><

>>:

"�
1
µ if � > µ�,

"�
1
µ | log "|1+ 1

µ if � = µ�,

"�
1
µ�

�µ��
↵µ if � < µ�.

(5)

Compare to standard, single level SC:

CostSL" h h��M h "��/↵�1/µ.

Case � > µ� � = µ� � = ↵ < µ�

Cost Reduction "��/↵ h "��/↵ "�1/µ
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Numerical Results

Two Implementation Challenges

• First, the multilevel method predicts a number of points, but not an
appropriate sparse grid. Thus, we may use more many points than
necessary.

We could ameliorate this issue by using adaptive grids, solving a
discrete optimization problem for grid levels, or various ad hoc
rounding strategies. However, we still see gains in e�ciency in the
”worst” case.

• Secondly, the method relies on a priori knowledge of the convergence
rates and parameters ↵,�, µ, �. We need a practical implementation
of the method. (See MLMC path simulation, Giles, 2008).
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Numerical Results

Example Problem:

As an example, we consider the following boundary value problem on
either D = (0, 1) or D = (0, 1)2:

�r · (a(!, x)ru(!, x)) = 1, for x 2 D,

u(!, x) = 0, for x 2 @D .

We take the coe�cient a to be of the form

a(!, x) = 0.5 + exp

"
NX

n=1

p
�nbn(x)Yn(!)

#
,

where {Yn}n2N is a sequence of independent, uniformly distributed
random variables on [-1,1], and {�n}n2N and {bn}n2N are the eigenvalues
and eigenfunctions, resp., of the covariance operator with kernel function
C (x , y) = exp[�kx � yk1].
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Numerical Results

Results in 10D
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Figure : Left: Cost versus Error for D = (0, 1)2, N = 10. Right: Number of samples per level
(predicted vs actual).
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Numerical Results

Results in 20D
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Figure : Left figures: Cost versus Error for D = (0, 1), N = 20. Right figures: Number of
samples per level (predicted vs actual).

P. Jantsch (UTK) Multilevel Stochastic Collocation SIAM UQ 2014 17 / 18



Conclusion

Multilevel methods:

• Can be practically applied to SC methods based on sparse grids

• Reduce computational cost for a variety of stochastic sampling
methods for SPDEs.

• Work to counteract the curse of dimensionality.

• E↵ective when applied to SC schemes even up to 20D.
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