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I  Introduction : Motivation

Inputs to a mathematical model including computational domain,
coefficients and source terms, may be subject to uncertainty due to:

Incomplete or inaccurate knowledge

Inherent variability in the system
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I  Introduction : Motivation

Inputs to a mathematical model including computational domain,
coefficients and source terms, may be subject to uncertainty due to:

Incomplete or inaccurate knowledge

Inherent variability in the system

Understand and propagate the effects of uncertainty to the output
of the simulation.
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Ur Introduction : Model Problem

Model Problem - Linear Elliptic SPDE
Find u € Lf)(r, HZ (D)) such that for almost every y € I

V- (a(y, x) - Vu(y, x)) = f(y, x) (1)

We assume that a, f are such that this problem has a unique solution rep-
resented in terms of y € I, a finite dimensional random vector.

v
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Find u € Lg(r, HZ (D)) such that for almost every y € I

V- (a(y, x) - Vu(y, x)) = f(y, x) (1)

We assume that a, f are such that this problem has a unique solution rep-
resented in terms of y € I, a finite dimensional random vector.

v

Such a PDE might represent ground water flow, etc.
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I  Introduction : Numerical Methods

Monte Carlo Method
Most popular method
Simple to implement, easily parallelizable

Convergence rate O(M~1/2) is dimension independant, but relatively
slow

Spectral Galerkin Methods
Higher rate of convergence
Degrees of freedom are coupled, leading to a large linear system

Suffers from the curse of dimensionality
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I  Introduction : Numerical Methods

For stochastic collocation we choose a set of (interpolatory) points
{yj}j"il C T, and for each y; solve the deterministic PDE

V- (aly;, x) - Vuly); x)) = £(y;, %), (2)

using the finite element method to obtain a solution wup(y;, x).
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I  Introduction : Numerical Methods

For stochastic collocation we choose a set of (interpolatory) points
{yj}j"il C T, and for each y; solve the deterministic PDE

V- (aly;, x) - Vuly); x)) = £(y;, %), (2)

using the finite element method to obtain a solution u(y;, x). Finally, we
construct our approximation by interpolation:

M

Tiun(y, x) = Y _ G(x)Wi(y) (3)

j=1
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I  Introduction : Numerical Methods

For stochastic collocation we choose a set of (interpolatory) points
{yj}j"il C T, and for each y; solve the deterministic PDE

V(a(yj,x)Vu(yJ,x)) = f(ijx)v (2)
using the finite element method to obtain a solution u(y;, x). Finally, we
construct our approximation by interpolation:

M

Tiun(y, x) = Y _ G(x)Wi(y) (3)

j=1

For this scheme, we need to solve M systems of size nj. For high
dimensional spaces I', the number of points M needed to obtain a good
approximation can be huge!
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Multilevel methods for SPDEs derive from multigrid methods for the FEM,
and have been used most commonly in the context of Monte Carlo
methods:
Multilevel Monte Carlo for numerical integration (S. Heinrich, 2001)
Multilevel Monte Carlo path simulations for computational finance
(M. Giles, 2008)

Since applied to a variety of SPDEs
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I  Multilevel Stochastic Collocation : Formulation

Suppose we have a sequence of finite element solutions
up (y) € Vh,, (with u_y = 0). Multilevel methods are based on the
following simple identity:

K
une(y) = un (y) = tn,_, (¥)-
k=0
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I  Multilevel Stochastic Collocation : Formulation

Suppose we have a sequence of finite element solutions
up (y) € Vh,, (with u_y = 0). Multilevel methods are based on the
following simple identity:

K
une(y) = un (y) = tn,_, (¥)-
k=0

Interpolation Nodes

Finite Element Mesh
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I  Multilevel Stochastic Collocation : Formulation

With Monte Carlo methods, we are usually interested in computing some
statistics of the approximation up, (y). For instance, we can compute
expectation using sample averages:

K
O S ) - wna). @
k=0 N

j=1

Multilevel Stochastic Collocation



"  Multilevel Stochastic Collocation : Formulation

With Monte Carlo methods, we are usually interested in computing some
statistics of the approximation up, (y). For instance, we can compute
expectation using sample averages:

K
O S ) - wna). @
k=0 N

j=1

For stochastic collocation, we interpolate the differences at different
resolutions. Suppose we have a sequence of interpolation operators {Z,, }
with increasing approximation properties. Now the multilevel
approximation is given by:

UhK ZI/K o (un (y) — un, ,(y)) - (5)
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I  Multilevel Stochastic Collocation : Formulation

We examine the method by considering the discretization errors
independently:

AN

ML ML
| I

< lu = umell + lJune — b
=1+ 1I.

HU—Uh
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I  Multilevel Stochastic Collocation : Formulation

We examine the method by considering the discretization errors
independently:

ML
|

AN

ML
< Nlu = unell + lJune — up |

=1+ Il

HU—Uh

The term /I can be further split apart using the triangle inequality:

K
= ” Z Up, — Upy_ 1 IIK—k(uhk - uhk—l)”
k=0

K
ZH I =7 k uhk uhk—l)”'
k=0
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Ur Multilevel Stochastic Collocation : Computational Cost

Now to compute the computational cost, we assume that the spatial
discretization converges in h as

I < Cshy,
and that the stochastic interpolation operators converge according to:

(1= Ty )un, — un, )l < G Mi", By,
K
— <Y CM
k=0

Multilevel Stochastic Collocation



Ur Multilevel Stochastic Collocation : Computational Cost

Now to compute the computational cost, we assume that the spatial
discretization converges in h as

I < Cshy,
and that the stochastic interpolation operators converge according to:

- 6]
H(l _IIK—k)(uhk - uhk—l)” < C/ MKﬁk h )
K

= 1<) M h
k=0

Finally, we compute the cost of the multilevel method using the metric

K
Cost = Z Mg _i C FEM Z My _ i h;v. (6)
k=0 k=0

Multilevel Stochastic Collocation



Theorem: [J, Teckentrup, Webster, Gunzburger]

Under our assumptions, for any € > 0 there exists an integer K such that

ML
lu =ty Mz (rmoy) < €

and L
gk if 8> py,
CostMt < s_%\ Iogs\Hi if 8=y, (7)
_1_op=p .
g K» ap if B < py.
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Theorem: [J, Teckentrup, Webster, Gunzburger]

Under our assumptions, for any € > 0 there exists an integer K such that

ML
lu =ty Mz (rmoy) < €

and L
g h if 8> py,
1 1
CostMt < e n| Iogs\Hﬁ if 8=y, (7)
_1_op=p .
e K© ap if B < py.

Compare to standard, single level SC:

Costot = h™'M ~ e /a1/k,

Case \ﬂ>w\6=m\ﬁ=a<m

Cost Reduction ‘ g~/ ‘ ~e /e ‘ g~/

Multilevel Stochastic Collocation



As an example, we consider the following boundary value problem on
either D = (0,1) or D = (0,1)2:

-V - (a(w,x)Vu(w,x)) =1, for x € D,
u(w, x) =0, for x € OD.
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As an example, we consider the following boundary value problem on
either D = (0,1) or D = (0,1)2:

-V - (a(w,x)Vu(w,x)) =1, for x € D,
u(w, x) =0, for x € OD.

We take the coefficient a to be of the form

N
Z \/)T,,bn(x) Ya(w)

a(w,x) = 0.5+ exp

where { Y} }hen is a sequence of independent, uniformly distributed
random variables on [-1,1], and {\,}hen and {b,}nen are the eigenvalues
and eigenfunctions, resp., of the covariance operator with kernel function

Cx,y) = exp[=lx = ylla].
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Numerical Results
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Left: Cost versus Error for D = (0, 1)2, N = 10. Right: Number of samples per level
(predicted vs actual).
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Numerical Results
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Left figures: Cost versus Error for D = (0,1), N = 20. Right figures: Number of
samples per level (predicted vs actual).

Multilevel Stochastic Collocation



Can be practically applied to SC methods based on sparse grids

Reduce computational cost for a variety of stochastic sampling
methods for SPDEs.

Work to counteract the curse of dimensionality.

Effective when applied to SC schemes even up to 20D.
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