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Overview

There are uncertainties in turbulence modeling coming from:

user-chosen, application specific parameters

model bias

Bayesian analysis of turbulence models is extremely expensive

large number of forward executions

each execution is costly
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Overview

A brief history:

Cheung, Oliver, Prudencio, Prudhomme, Moser (2011), Oliver,
Moser (2011): Bayesian uncertainty analysis for RANS models.

Ma and Zabaras (2009), Zeng, Shi, Zhang, Wu (2012), Zhang,
Lu, Ye, Gunzburger, Webster (2013): surrogate modeling for
geophysical and groundwater models.

Our objective: applying surrogate-based MCMC approach to
Bayesian inference of LES models to reduce the cost of exploring the
posterior distribution. We justify the accuracy and efficiency of
surrogate modeling method in this talk.
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Turbulence

Courtesy of Katsushika Hokusai Courtesy of Pittsburgh

Supercomputing Center
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Smagorinsky model

Incompressible Navier-Stokes equation

ut +∇ · (u⊗ u)− ν∆u+∇p = f,

∇ · u = 0, u(x, 0) = u0(x).

Space Filtered Navier-Stokes equation

ut +∇ · (u⊗ u)− ν∆u+∇p+∇ · (u⊗ u− u⊗ u)︸ ︷︷ ︸
R(u,u)

= f.

Smagorinsky model (von Neumann, Richtmyer (1950), Smagorinsky
(1963)):

∇ ·R(u, u) ' −∇ ·
(

2
(
CSδ

(
1− e−y+/A+

)p)2

|∇su|∇su

)
.
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Bayesian inference

Bayesian inference problem:

d = f(θ) + ε

d = (d1, . . . , dNd): vector of Nd measurement data,
θ = (θ1, . . . , θNθ): vector of Nθ model parameters,
f(θ): forward model,
ε: measurement, parametric and structural errors.

Bayes’ theorem

p(θ|d) =
L(θ|d)p(θ)∫
L(θ|d)p(θ)dθ

Example: multivariate normal likelihood function

L(θ|d) = exp

(
−1

2
(d− f(θ))>Σ−1(d− f(θ))

)
.
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Isotropic sparse grid

Number of interpolation points is:


m0 = 1,

m1 = 2,

mi = 2i−1 if i ≥ 2.

The grid abcissas is defined by:

θ0
1 = 0.5 for i = 0,

θ1
1 = 0, θ1

2 = 1 for i = 1,

θij =
2j − 1
i∑

k=0

mk − 1

j = 1,mi, i ≥ 2.

Full tensor-product grid: λ(i) = maxn=1,...,Nθ in,

Isotropic sparse grid: λ(i) = |i| = i1 + · · ·+ iNθ .
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Linear basis functions
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Adaptive sparse grid

IL,Nθ (η)(θ) =
∑

λ(i)≤L
∆Ii,Nθ (η)(θ) =

∑
λ(i)≤L

∑
j∈Bi

cijφ
i
j(θ)
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aSG-SC surrogate modeling

1 Build the surrogate model for f(θ) using adaptive sparse-grid
stochastic collocation (aSG-SC) method. The forward problem
is solved only for the sparse parameter samples.

2 The surrogate model for p(θ|d) can be obtained from that for
f(θ) by simple and cheap calculations.

3 Evaluate p(θ|d) by MCMC sampling the surrogate model
directly without forward execution.
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Example: 2D flow around a circular cylinder

Ω = (0, 2.2)× (0, 1.4), Re = 500.

P2-P1 finite element with polygonal boundary approximation.

Crank-Nicolson time discretization with fixed point iteration.

∆t = 1/1000, T = 12.

Dirichlet inflow and outflow, no-slip top and bottom boundary.
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Example: 2D flow around a circular cylinder

Figure : CS = 2, p = 0, δ ' π/480.

Figure : CS = 0.5, p = 0, δ ' π/720.
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Example: 2D flow around a circular cylinder

Calibration data: synthetic data of mean velocity and Reynold
stresses at 11 points at x/D = 1 generated by solving Smagorinsky
models.
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Example: 2D flow around a circular cylinder

CS p δ
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Example: 2D flow around a circular cylinder

Likelihood function: exp(− 1
2

(d− f)>Σ−1(d− f)) where Σ = (0.1)2.

True value: CS = 0.5, p = −0.5, δ = −0.75.
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Example: 2D flow around a circular cylinder

Likelihood function: exp

−500 ·

∑Nd
i=1

(
(di − fi)− (d− f)

)2
∑Nd
i=1

(
di − d

)2
.
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Example: 2D flow around a circular cylinder

Likelihood function: exp(− 1
2

(d− f)>Σ−1(d− f)) where Σ = (0.1)2.

True value: CS = 0.5, p = −0.5, δ = −0.75.
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Conclusions

In this work, we introduce a surrogate modeling approach to Bayesian
uncertainty analysis of Large Eddy Simulation. For the numerical
example of 2D flow around a cylinder, this approach has been shown
to:

significantly reduce the number of costly LES executions,

be reliable with reasonable search regions of filter width,

be reflexible for different observations and likelihood functions.

It is worth to study surrogate-based MCMC sampling for engineering
turbulent flow models.
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Thank you for your attention!!!
Questions?
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