
A Hierarchical Acceleration of a Stochastic Collocation
Method for PDEs with Random Input Data

Guannan Zhang

Computer Science and Mathematics Division – Oak Ridge National Laboratory

Supported by DOE, ASCR via Householder Fellowship and EQUINOX

Collaborators

Max Gunzburger Florida State University

Clayton Webster, Oak Ridge National Laboratory

July 8, 2014

Guannan Zhang http://www.csm.ornl.gov/~gz3 – 2014 SIAM Annual Meeting, Chicago, IL 1/25

http://www.csm.ornl.gov/~gz3


Stochastic problems: PDEs with random inputs Stochastic non-intrusive methods (MC, NIPC, SC) Piecewise adaptive sparse-grid approximation with hierarchical acceleration Error estimate and complexity analyses A numerical example Concluding remarks

Outline

1 Stochastic problems: PDEs with random inputs

2 Stochastic non-intrusive methods (MC, NIPC, SC)

3 Piecewise adaptive sparse-grid approximation with hierarchical acceleration

4 Error estimate and complexity analyses

5 A numerical example

6 Concluding remarks

Guannan Zhang http://www.csm.ornl.gov/~gz3 – 2014 SIAM Annual Meeting, Chicago, IL 2/25

http://www.csm.ornl.gov/~gz3


Stochastic problems: PDEs with random inputs Stochastic non-intrusive methods (MC, NIPC, SC) Piecewise adaptive sparse-grid approximation with hierarchical acceleration Error estimate and complexity analyses A numerical example Concluding remarks

Partial differential equations with random input data
A simplified general (stationary) setting

Consider an operator L, linear or nonlinear, on a domain D ⊂ Rd, which depends on
some coefficients a(ω, x) with x ∈ D, ω ∈ Ω and (Ω,F ,P) a complete probability
space. The forcing f = f(ω, x) and the solution u = u(ω, x) are random fields s.t.

L(a)(u) = f a.e. in D

equipped with suitable boundary conditions.

A1. the solution has realizations in the Banach space W (D), i.e. u(·, ω) ∈W (D)
almost surely

‖u(·, ω)‖W (D) ≤ C‖f(·, ω)‖W∗(D)

A2. the forcing term f ∈ L2
P(Ω;W ∗(D)) is such that the solution u is unique and

bounded in L2
P(Ω;W (D))

A3. P
{
a(ω, x) ∈ (amin, amax), ∀x ∈ D

}
= 1 with 0 < amin < amax <∞

Guannan Zhang http://www.csm.ornl.gov/~gz3 – 2014 SIAM Annual Meeting, Chicago, IL 3/25

http://www.csm.ornl.gov/~gz3


Stochastic problems: PDEs with random inputs Stochastic non-intrusive methods (MC, NIPC, SC) Piecewise adaptive sparse-grid approximation with hierarchical acceleration Error estimate and complexity analyses A numerical example Concluding remarks

Examples
Linear and nonlinear elliptic PDEs with random input data

Example: The linear elliptic problem{
−∇ · (a(ω, ·)∇u(ω, ·)) = f(ω, ·) in Ω×D,

u(ω, ·) = 0 on Ω× ∂D,

with f(ω, ·) square integrable with respect to P, satisfies assumptions A1, A2 and
A3 with W (D) = H1

0 (D)

Example: The nonlinear elliptic problem

Similarly, for k ∈ N+,{
−∇ · (a(ω, ·)∇u(ω, ·)) + u(ω, ·)|u(ω, ·)|k = f(ω, ·) in Ω×D,

u(ω, ·) = 0 on Ω× ∂D,

satisfies assumptions A1, A2 and A3 with W (D) = H1
0 (D) ∩ Lk+2(D)
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Parameterization of random fields
Finite dimensional noise assumption

WLOG assume the random fields a(ω, x) and f(ω, x) depends on a finite number of
random variables y(ω) = [y1(ω), . . . , yN (ω)] : Ω→ RN s.t.

a(ω, x) = a(y(ω), x), f(ω, x) = f(y(ω), x)

– Piecewise constant approximations: let {Dn}Nn=1 be a partition of D then
define a(ω, x) =

∑N
n=1 σnyn(ω)χDn(x)

– Truncated infinite dimensional expansions: e.g. expand a(ω, x) in a
Karhunen-Loève expansion and retain the first N terms.

Given a(y(ω), x), f(y(ω), x) ⇒ u(ω, x) = u(y1(ω), . . . , yN (ω), x) s.t.

L(a(y, x))(u(y, x)) = f(y, x) in D a.s.

y(ω) has a joint PDF ρ : Γ ≡
∏N
n=1 Γn ⊂ RN → R+, with ρ ∈ L∞(Γ)

The probability space (Ω,F , P ) is mapped to (Γ,B(Γ), ρ(y)dy), where B(Γ)
denotes the Borel σ-algebra on Γ and ρ(y)dy is the probability measure of y
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Stochastic non-intrusive methods
Multivariate approximations of u(y, x) in Γ × D

The general procedure of a non-intrusive approach of parametric PDEs is

Choose a set of sample points HM (Γ) = {yk ∈ Γ}Mk=1

Solve the parametric PDE system to obtain uNh(yk) for k = 1, . . . ,M by using
deterministic solvers with mesh size h

Construct a multivariate approximation with the sampled values:

uNh,M (y, x) =

M∑
k=1

ck(x) · ψk(y),

where, for k = 1, . . . ,M , uNh,M (yk, x) = uNh(yk, x), ψk(y) ∈ P(Γ) are basis
functions which expand the polynomial space P(Γ), and the coefficients ck(x)
are determined by the samples {uNh(yk, x)}Mk=1

Quantity of interest, e.g. E[u](x)

E[u](x) ≈
∫

Γ

uNh,M (y, x)ρ(y)dy =

M∑
k=1

ck(x)

∫
Γ

ψk(y)ρ(y)dy
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Examples of non-intrusive methods

Monte Carlo and quasi Monte Carlo methods

– low regularity requirement of u(y, x)

– slow convergence, e.g. O(M1/2)

Non-intrusive polynomial chaos expansions

– high regularity requirement of u(y, x)

– orthogonal polynomial basis

– fast convergence rates

Global (sparse-grid) stochastic collocation methods

– high regularity requirement of u(y, x)

– fast convergence rates

– dimensional adaptivity

Piecewise hierarchical (sparse-grid) stochastic collocation methods
– low regularity requirement of u(y, x)

– faster convergence than Monte Carlo methods

– local adaptivity
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Hierarchical stochastic collocation methods
Complexity reduction through solution acceleration

At level L ∈ N+, a hierarchical SC approximation is (informally) defined by:

uNh,ML = IL[uNh ] ≡ IL−1[uNh ] + ∆L[uNh ]

IL−1[uNh ] is the hierarchical interpolant at level L− 1, and ∆L[uNh ] is the
corresponding hierarchical incremental interpolant at level L

∆L[uNh ] interpolates on the difference grid ∆HML = HML\HML−1 ,
s.t. ∆L[uNh ]→ 0 as L→∞

Relationship to multilevel methods (e.g., MLMC, MLSC): reduce complexity by
balancing errors across a sequence of spatial approximations [TJWG2014]

u
(ML)
K :=

K∑
k=0

ILK−k
[
uNhk − uNhk−1

]
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Local hierarchical sparse-grid approximation of u(y, x)
Sparse grid construction

The hierarchical sparse-grid interpolant uNh,ML(y, x) is defined by

uNh,ML(y, x) =
L∑
l=0

∑
g(l)=l

∑
i∈Bl

cl,i(x) · ψl,i(y)

ℓ
2
=

3
,
N

ℓ
2
=

8
ℓ
2
=

2
,
N

ℓ
2
=

4
ℓ
2
=

1
,
N

ℓ
2
=

2

ℓ 1 = 0, N ℓ 1 = 1

ℓ
2
=

0
,
N

ℓ
2
=

1

ℓ 1 = 1, N ℓ 1 = 2 ℓ 1 = 2, N ℓ 1 = 4 ℓ 1 = 3, N ℓ 1 = 8

spar s e gr id : 49 p oint s (L = 3)

g ( i ) = | i | = i 1 + · · ·+ iN

fu l l t en s or -p r oduct gr id : 225 p oint s

g ( i ) = max( i 1, . . ., iN )

(a)

(b)

(c)

ψl,i(y) =
∏N
n=1 ψln,in (yn)

cl,i(x) is the surplus

Bl is the index set of the
“block” l = (l1, . . . , lN )

L indicates the resolution
level of uNh,ML (y, x) in Γ

Full tensor-product grid:
g(l) = max

n=1,...,N
ln

Isotropic sparse grid:
g(l) = l1 + · · ·+ lN
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Construction of the surpluses cl,i(x) in uNh,ML
(y, x)

The surpluses are given in terms of the spatial finite element basis {φj(x)}Nhj=1

by cl,i(x) =
∑Nh
j=1 cj,l,i · φj(x) such that

uNh,ML(y, x) =

Nh∑
j=1

 L∑
l=0

∑
|l|=l

∑
i∈Bl

cj,l,i · ψl,i(y)

φj(x)

For cl,i(x) with l = L, the hierarchical interpolatory property provides us

cj,l,i = uNh(yl,i, xj)− uNh,ML−1(yl,i, xj) for j = 1, . . . , Nh

When u(y, x) has bounded mixed second-order weak derivatives with respect to
y, the surpluses can be bounded as

|cj,l,i| ≤ C2−2·|l| for i ∈ Bl and j = 1, . . . , Nh

The hierarchical structure, especially the decay of surpluses, immediately leads
to a strategy to do adaptivity
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Two-dimensional adaptive sparse grid
Level 0, 1, 2 sparse grids with l1 + l2 ≤ 2

H0,2

i 2
=

2

H0,1

i 2
=

1

H0,0

i1 = 0
i 2

=
0

H1,2

H1,1

H1,0

i1 = 1

H2,2

H2,1

H2,0

i1 = 2

Isotropic sparse grid H2
2

Adaptive sparse grid Ĥ2
2

Each point that corresponds to a large surplus, e.g., the points in red, blue, or green, lead to

2 children points added in each direction resulting in the adaptive sparse grid
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Computational cost of stochastic collocation methods
for complex PDE systems

At each collocation point yl,i, uNh(x,yl,i) is approximated based on the
solution from the selected linear system solver, i.e.

uNh(x,yl,i) =

Nh∑
j=1

uj,l,iφj(x) ≈ ũNh(x,yl,i) =

Nh∑
j=1

ũj,l,iφj(x)

where ũl,i = (ũ1,l,i, . . . , ũNh,l,i)
> is the output of the solver.

In the case of using conjugate gradient methods, the error ekl,i = ul,i − ukl,i is
bounded by

‖ekl,i‖Al,i ≤ 2

(√
κl,i − 1
√
κl,i + 1

)k
‖e0

l,i‖Al,i

We describe the total computational cost for constructing ũNh,ML ≈ uNh,ML is
represented by

Ctotal =

L∑
l=0

∑
|l|=l

∑
i∈Bl

Ml,i

where Ml,i is the number of iterations needed at the collocation point yl,i.
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Exploit the hierarchical structure to accelerate solutions
in the context of local hierarchical sparse-grid approximation

The approximation ũNh,ML(x,y) can be represented in a hierarchical manner,

ũNh,ML(x,y) = ũNh,ML−1(x,y) +
∑
g(l)=L

∑
i∈Bl

c̃l,i(x) · ψl,i(y)

At each collocation point yl,i on level L, ul,i = (u1,l,i, . . . , uNj ,l,i)
> can be

represented by

uj,l,i = uNh,ML−1(xj ,yl,i) + cj,l,i, for j = 1, . . . , Nh

Key idea

Due to the decay of |cj,l,i| as |l| → ∞, the initial guess for the CG solver is given by

ũ0
l,i =

(
ũNh,ML−1(x1,yl,i), . . . , ũNh,ML−1(xNh ,yl,i)

)>
where the error of such prediction is, for j = 1, . . . , Nh,∣∣ũ0

j,l,i − u(xj ,yl,i)
∣∣ ≤ ∣∣ũNh,ML−1(xj ,yl,i)− uNh,ML−1(xj ,yl,i)

∣∣+ cj,l i
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What about the “total” error?
when accounting for FEM, sparse-grid and solver errors

The total error e = u(x,y)− ũNh,ML(x,y) can be split into

‖e‖ ≤ ‖u− uNh‖︸ ︷︷ ︸
e1(FEM error)

+ ‖uNh − uNh,ML‖︸ ︷︷ ︸
e2(SG error)

+ ‖uNh,ML − ũNh,ML‖︸ ︷︷ ︸
e3(solver error)

Lemma [GWZ14]: total error estimate

For the second-order elliptic PDE with homogeneous Dirichlet boundary conditions,
the approximate solution ũNh,ML is constructed using the piecewise linear SG
method, and the CG solver. Then the error e = u− ũNh,ML is bounded by

‖e‖L2(D×Γ) ≤ Cfemh
r+1︸ ︷︷ ︸

bound of e1

+Csg2−2L
N−1∑
k=0

(
L+N − 1

k

)
︸ ︷︷ ︸

bound of e2

+ 2N
(
L+N

N

)
ecg︸ ︷︷ ︸

bound of e3

where u ∈ Hr+1(D)⊗ L2
ρ(Γ), the constant Cfem is independent of h and y, the

constant Csg is independent of L and N , and ecg is the maximum CG error.
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Computational cost analyses
for ε-complexity

The goal is to estimate the computational cost of constructing ũNh,ML with
the prescribed accuracy ‖e‖ = ‖uNh,ML − ũNh,ML‖ ≤ ε

According to the error estimate, a sufficient condition of ‖e‖ ≤ ε is as follows:

‖e1‖ ≤ Cfem · hr+1 ≤ ε

3

‖e2‖ ≤ Csg · 2−2L
N−1∑
k=0

(
L+N − 1

k

)
≤ ε

3

‖e3‖ ≤ 2N
(
L+N

N

)
ecg ≤

ε

3

Let Cmin represents the minimum cost, i.e. the minimum number of conjugate
gradient iterations, to satisfy the above inequalities, and we are trying to
estimate an upper bound of Cmin.

– Estimate maximum h and minimum L to achieve the bounds for e1 and e2

– Determine the necessary value of ecg to achieve the bound for e3

– Estimate the upper bound for Cmin based on ecg
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Computational cost analyses
for ε-complexity

It is straightforward to obtain the upper bound of h, i.e.,

h ≤
(

ε

3Cfem

) 1
r+1

The upper bound of the minimum level L to achieve e2 ≤ ε
3

is given by

Lemma [GWZ14, WW95]

For ε < 3Csg, the accuracy ‖e2‖ ≤ ε
3

can be achieved with level Lmin bounded by

Lmin ≤ Lk =
tkN

2 ln 2
+ 1 with s =

2e

ln 2

(
3Ccg

ε

)
where {tk}∞k=0 is a monotonically decreasing sequence defined by

tk = ln(tk−1s) with t0 =
e

e− 1
ln s.

{Lk}∞k=0 is also a monotonically decreasing sequence
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Computational cost analyses
for ε-complexity

The maximum CG error ecg can be bounded by

ecg = max
i∈Bl,|l|≤L

‖el,i‖2 ≤ 2
√
κ

(√
κ− 1√
κ+ 1

)J
· τ0

with

κ = max
i∈Bl,|l|≤L

κl,i ≤ κ, J = max
i∈Bl,|l|≤L

Jl,i, τ0 = max
i∈Bl,|l|≤L

‖e0
l,i‖

κ is the maximum condition number of all the involved linear systems which
can be bounded by a function of 1/h or 1/ε.

The minimum iteration number J to achieve e3 ≤ ε
3

for specific τ0, ε, κ, L and
N is bounded by

J(τ0, ε, κ, L,N) ≤
1
2

log2(κ) + log2

[
3·2N+1τ0

ε

(
L+N
N

)]
log2

(√
κ+1√
κ−1

)
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Computational cost analyses
without hierarchical acceleration

Without hierarchical acceleration, τ0 = O(‖u‖∞), so that the minimum cost
Cmin to achieve ‖e‖ ≤ ε can be bounded by

Cmin ≤ |HL(Γ)| · J(τ0, ε, κ, Lk, N)

whose estimate is given as follows:

Theorem [GWZ14], complexity without hierarchical acceleration

The minimum cost Cmin for building the standard piecewise linear SG approximation
ũNh,ML(x,y) with the prescribed accuracy ε > 0 can be bounded by

Cmin ≤
α1

N

α2 + α3

log2

(
3Csg

ε

)
N

α4N (
3Csg

ε

)α5

× 1

log2

(√
κ+ 1√
κ− 1

) [α6 log2

(
3Csg

ε

)
+ log2(

√
κτ0) + α7N + α8

]
,

where the constants α1, . . . , α8 are independent of L, N and ε.
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Computational cost analyses
with hierarchical acceleration

With hierarchical acceleration, τ l0 ≤ Csg2−2l + 2Necg for l = 1, . . . , L, so that
the minimum cost Cmin to achieve ‖e‖| ≤ ε can be bounded by

Cmin ≤
Lk∑
l=0

|∆Hl(Γ)| · J(τ l0, ε, κ, Lk, N)

whose estimate is given as follows:

Theorem [GWZ14], complexity with hierarchical acceleration

The minimum cost Cmin for building the standard piecewise linear SG approximation
ũNh,ML(x,y) with the prescribed accuracy ε > 0 can be bounded by

Cmin ≤ α1

α2 + α3

log2

(
2Csg

ε

)
N

α4N (
2Csg

ε

)α5

× 1

log2

(√
κ+ 1√
κ− 1

) [2N − log2(N) + α9 + log2(
√
κ)
]
,

where the constants α1, . . . , α5 and α9 are independent of L, N and ε.
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Numerical example
Case 1: linear elliptic problem with random inputs

We consider the 2D Poisson equation with random diffusivity and forcing term, i.e.,{
∇ · (a(x,y)∇u(x,y)) = f(x,y) in [0, 1]2 × Γ,

u(x,y) = 0 on ∂D × Γ,

where a and f arethe nonlinear functions of the random vector y given by

a(x,y) = 0.1 + exp
[
y1 cos(πx1) + y2 sin(πx2)

]
,

and
f(x,y) = 10 + exp

[
y3 cos(πx1) + y4 sin(πx2)

]
,

where yn for n = 1, 2, 3, 4 are i. i. d. random variables following the uniform
distribution U([−1, 1]). The quantity of interest is the mean value of the solution
over D × Γ, i.e.

QoI = E
[∫

D

u(x,y)dx

]
,
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Numerical example
Case 1: linear elliptic problem with random inputs

The computational savings of the piecewise SG approach with hierarchical acceleration

Basis type Error # SG points
hSGSC hSGSC+acceleration

cost cost saving

Linear

1.0e-2 377 13,841 7,497 45.8%

1.0e-3 1,893 81,068 38,670 52.2%

1.0e-4 7,777 376,287 167,832 55.3%

Quadratic

1.0e-3 701 29,874 11,877 60.2%

1.0e-4 2,285 110,744 36,760 66.8%

1.0e-5 6,149 329,294 100,420 69.5%

Cubic

1.0e-4 1,233 59,344 23,228 60.8%

1.0e-5 3,233 172,845 57,777 66.5%

1.0e-6 7,079 415,760 129,433 68.8%
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Numerical example
Case 2: A stochastic elliptic problem using glocal sparse grid SC

Let x = (x1, x2) and consider the following linear elliptic SPDE:{
−∇ · (a(x1,y(ω))∇u(x,y) = cos(x1) sin(x2) [0, 1]2 × Γ

u(x,y) = 0 on ∂D × Γ

The diffusion coefficient is a 1d random field (varies only in x1) and is
a(x1,y) = 0.5 + exp{γ(x1,y)}, where γ is a truncated 1d random field with
correlation length L and covariance

Cov[γ](x1, x̃1) = exp

(
− (x1 − x̃1)2

L2

)
, ∀(x1, x̃1) ∈ [0, 1]

γ(x1,y) = 1 + y1(ω)

(√
πL

2

)1/2

+
N∑
n=2

βn ϕn(x1) yn(ω)

βn :=
(√
πL
)1/2

e
−(bn2 cπL)2

8 , ϕn(x1) :=

{
sin
(
bn

2
cπx1

)
, if n even,

cos
(
bn

2
cπx1

)
, if n odd

E[yn] = 0 and E[ynym] = δnm for n,m ∈ N+ and iid in U(−
√

3,
√

3)
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Computational savings
QoI = E[u]

Savings versus level and savings versus error for L = 1/64 (left) and L = 1/2 (right)
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Conclusion and future work

The bulk of the computational cost of high-dimensional extreme-scale
computational simulations is associated with linear or nonlinear iterative solvers,
and the convergence of such methods can be dramatically improved by using
the hierarchical acceleration approach

The new method can be easily extended to other non-intrusive methods,
including global sparse-grid approximation, polynomial chaos expansion, etc..

Extend the new approach to time-dependent problems

Incorporate this approach into a multi-level framework using model hierarchies
{us(x,y)}Ss=1 of increasing complexity.

‖ûS − uS‖ ≤ ‖u0
ML − u

0‖+

S∑
s=1

‖(usML−s − u
s−1
ML−s

)− (us − us−1)‖ ≤ ε
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